Preliminary determination of optimal size for renewable energy resources in buildings using RETScreen

Energy ◽  
2012 ◽  
Vol 47 (1) ◽  
pp. 83-96 ◽  
Author(s):  
Kyoung-Ho Lee ◽  
Dong-Won Lee ◽  
Nam-Choon Baek ◽  
Hyeok-Min Kwon ◽  
Chang-Jun Lee
Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5377
Author(s):  
Abdullah Al-Shereiqi ◽  
Amer Al-Hinai ◽  
Mohammed Albadi ◽  
Rashid Al-Abri

Harnessing wind energy is one of the fastest-growing areas in the energy industry. However, wind power still faces challenges, such as output intermittency due to its nature and output reduction as a result of the wake effect. Moreover, the current practice uses the available renewable energy resources as a fuel-saver simply to reduce fossil-fuel consumption. This is related mainly to the inherently variable and non-dispatchable nature of renewable energy resources, which poses a threat to power system reliability and requires utilities to maintain power-balancing reserves to match the supply from renewable energy resources with the real-time demand levels. Thus, further efforts are needed to mitigate the risk that comes with integrating renewable resources into the electricity grid. Hence, an integrated strategy is being created to determine the optimal size of the hybrid wind-solar photovoltaic power systems (HWSPS) using heuristic optimization with a numerical iterative algorithm such that the output fluctuation is minimized. The research focuses on sizing the HWSPS to reduce the impact of renewable energy resource intermittency and generate the maximum output power to the grid at a constant level periodically based on the availability of the renewable energy resources. The process of determining HWSPS capacity is divided into two major steps. A genetic algorithm is used in the initial stage to identify the optimum wind farm. A numerical iterative algorithm is used in the second stage to determine the optimal combination of photovoltaic plant and battery sizes in the search space, based on the reference wind power generated by the moving average, Savitzky–Golay, Gaussian and locally weighted linear regression techniques. The proposed approach has been tested on an existing wind power project site in the southern part of the Sultanate of Oman using a real weather data. The considered land area dimensions are 2 × 2 km. The integrated tool resulted in 39 MW of wind farm, 5.305 MW of PV system, and 0.5219 MWh of BESS. Accordingly, the estimated cost of energy based on the HWSPS is 0.0165 EUR/kWh.


Due to the increase in demand for energy resources and the effect of the ongoing events in the region of Jordan. The energy resources are decreasing over time and that also has a negative effect on the Jordanian economy. Providing energy is always a vital and significant problem in Jordan. Jordan on the other hand is a rich in some of the renewable energy resources, which are not fully used until this moment. Therefore, it is essential to find alternative and renewable energy resources. Moreover, there is also a lack in creating a clear and long term future plans in the energy field. In this paper, energy sources and the efficiency of the energy sector in Jordan will be specified, in addition to the determination of the cofounders and sponsors for enhancing and developing the energy sector. The shift in policy that is needed to increase this efficiency will be also investigated.


In conventional power system the transmission and distribution (T&D) losses is a major concern. Renewable energy resources placed at load centers can reduce the T&D losses. For power system planners and researchers it is essential to find the optimal size and position of renewable energy resources to be place in distribution networks. Renewable energy source such as solar energy is abundantly present in the environment. With the help of solar photovoltaic (SPV) system solar energy can be converted to electrical energy. Placement of SPV in distribution system is an interesting area for researchers and planners, the random placement of SPV in distribution system leads to more power losses and poor voltage profile. In this article mathematical modelling of time varying nature of SPV and variable load has been explained and particle swarm optimization (PSO) method is proposed to find the best size and location of the SPV system. This method is tested on IEEE 33 bus system. For the validation of result existing technique based on analytical expression is selected. It is found that PSO gives better result in compare to analytical method.


2019 ◽  
Vol 10 (12) ◽  
pp. 1165-1171
Author(s):  
Karl Gatterer ◽  
◽  
Salah Arafa ◽  

Reliable and affordable energy is the key for the socio-economic development in rural and desert communities worldwide. While energy can be used for consumption purposes such as Lighting, Access to Information, Comfort and Entertainment, productive use of renewable energy is the key enabler for SMEs and Economy to grow. The paper examines the complex interactions among Energy, Materials, Water, Food, Building, Employment and Environment. It also discusses the implementation of renewable energy technologies to overcome some of barriers faced by rural villages and desert communities. It shows some of the special applications and approaches used over the past few decades in energy conversion, consumption and conservation to achieve poverty reduction, social justice and sustainable development. Field experiences in Basaisa projects, Egypt showed that open free dialogues with all stakeholders, site-specific education and training, appropriate local financing systems and access to knowledge are key-elements and essential factors for achieving green economy and sustainable community development. The coming decade will see a continued expansion of knowledge about renewable energy resources and its useful applications as systems friendly to the environment and as tools for economic activities, sustainable living and growth in rural and desert communities.


2012 ◽  
Vol 2 (11) ◽  
pp. 121-124
Author(s):  
Savitha C Savitha C ◽  
◽  
Dr. S. Mahendrakumar Dr. S. Mahendrakumar

Author(s):  
S. G. Obukhov ◽  
I. A. Plotnikov ◽  
V. G. Masolov

The paper presents the results of the comparative analysis of operation modes of an autonomous hybrid power complex with/without the energy store. We offere the technique which defines the power characteristics of the main components of a hybrid power complex: the consumers of the electric power, wind power and photo-electric installations (the last ones have been constructed). The paper establishes that, in order to compensate the seasonal fluctuations of power in autonomous power systems with renewable energy resources, the accumulative devices are required, with a capacity of tens of MWh including devices that are capable to provide energy storage with duration about half a year. This allows abandoning the storage devices for smoothing the seasonal fluctuations in the energy balance.The analysis of operation modes of energy stores has shown that for a stock and delivery of energy on time intervals, lasting several hours, the accumulative devices with rather high values of charging and digit power aren't required. It allows using the lead-acid rechargeable batteries of the deep category for smoothing the daily peaks of surplus and a capacity shortage. Moreover, the analysis of operation modes of energy stores as a part of the hybrid complexes has demonstrated that in charging/digit currents of the energy store the low-frequency and high-frequency pulsations of big amplitude caused by changes of size of output power of the renewable power installations and loading are inevitable. If low-frequency pulsations (the period of tens of minutes) can partially be damped due to the restriction of size of the maximum charging current of rechargeable batteries, then it is essentially impossible to eliminate high-frequency pulsations (the period of tens of seconds) in the power systems with the only store of energy. The paper finds out that the combined energy store having characteristics of the accumulator in the modes of receiving and delivery of power on daily time intervals, and at the same time having properties of the supercondenser in the modes of reception and return of impulses of power on second intervals of time is best suited to requirements of the autonomous power complexes with renewable energy resources.


2020 ◽  
pp. 165-171
Author(s):  
Iryna Hryhoruk

Exhaustion of traditional energy resources, their uneven geographical location, and catastrophic changes in the environment necessitate the transition to renewable energy resources. Moreover, Ukraine's economy is critically dependent on energy exports, and in some cases, the dependence is not only economic but also political, which in itself poses a threat to national security. One of the ways to solve this problem is the large-scale introduction and use of renewable energy resources, bioenergy in particular. The article summarizes and offers methods for assessing the energy potential of agriculture. In our country, a significant amount of biomass is produced every year, which remains unused. A significant part is disposed of due to incineration, which significantly harms the environment and does not allow earning additional funds. It is investigated that the bioenergy potential of agriculture depends on the geographical distribution and varies in each region of Ukraine. Studies have shown that as of 2019 the smallest share in the total amount of conventional fuel that can be obtained from agricultural waste and products suitable for energy production accounts for Zakarpattya region - 172.5 thousand tons. (0.5% of the total) and Chernivtsi region - 291.3 thousand tons. (0.9%). Poltava region has the greatest potential - 2652.2 thousand tons. (7.8%) and Vinnytsia - 2623.7 thousand tons. (7.7%). It should be noted that the use of the energy potential of biomass in Ukraine can be called unsatisfactory. The share of biomass in the provision of primary energy consumption is very small. For bioenergy to occupy its niche in the general structure of the agro-industrial complex, it is necessary to develop mechanisms for its stimulation. In addition, an effective strategy for the development of the bioenergy sector of agriculture is needed. The article considers the general energy potential of agriculture, its indicative structure. The analysis is also made in terms of areas. In addition, an economic assessment of the possible use of existing potential is identified.


Sign in / Sign up

Export Citation Format

Share Document