scholarly journals Thermoacoustic Stirling power generation from LNG cold energy and low-temperature waste heat

Energy ◽  
2017 ◽  
Vol 127 ◽  
pp. 280-290 ◽  
Author(s):  
Kai Wang ◽  
Swapnil Dubey ◽  
Fook Hoong Choo ◽  
Fei Duan
Author(s):  
Lei Li ◽  
Leren Tao ◽  
Qingpu Li ◽  
Yongpan Hu

Abstract Due to the low boiling point of organic fluids, the organic Rankine cycle (ORC) is an effective way to improve the recovery efficiency of low-temperature waste heat. An ORC power plant was established with an actual generating capacity of 16.3 kW. As the ORC technology is in the initial stage of commercial application, a technical and economic analysis has been conducted in this paper. Through analysis of each part investment of the power generation plant, it is found that the ORC system part accounts for 61% of the total initial investment, and the larger the power generation scale, the larger the proportion. An economic model has been proposed to study the economic feasibility of low-temperature industrial waste heat conversion in this plant. The influences of the installation of cooling water system, preheater, superheater, loan ratio, interest rate on electricity production cost (EPC) and profit are analyzed. According to the analysis, the lowest EPC of the plant is 0.46 Yuan/(kW • h).


2011 ◽  
Vol 383-390 ◽  
pp. 6614-6620
Author(s):  
Xin Ling Ma ◽  
Xiang Rui Meng ◽  
Xin Li Wei ◽  
Jia Chang ◽  
Hui Li

This paper presents energy analysis, thermodynamic calculation and exergy analysis for waste heat power generation system of Organic Rankine Cycle based on the first and second laws of thermodynamics. In order to improve system performance, for low-temperature waste heat of 120°C and R245fa organic working fluid, using Aspen Plus software conducted simulation, optimization and improvement. Results from these analyses show that decreasing the expander inlet temperature, increasing inlet pressure of the expander, and adding regenerative heater can increase thermal and exergy efficiencies, at the same time reduce system irreversibility.


Sign in / Sign up

Export Citation Format

Share Document