Off-design performance of the supercritical carbon dioxide recompression Brayton cycle with NDDCT cooling for concentrating solar power

Energy ◽  
2019 ◽  
Vol 187 ◽  
pp. 115992 ◽  
Author(s):  
Sam Duniam ◽  
Ananthanarayanan Veeraragavan
Author(s):  
Jin Young Heo ◽  
Jinsu Kwon ◽  
Jeong Ik Lee

For the concentrating solar power (CSP) applications, the supercritical carbon dioxide (s-CO2) power cycle is beneficial in many aspects, including high cycle efficiencies, reduced component sizing, and potential for the dry cooling option. More research is involved in improving this technology to realize the s-CO2 cycle as a candidate to replace the conventional power conversion systems for CSP applications. In this study, an isothermal compressor, a turbomachine which undergoes the compression process at constant temperature to minimize compression work, is applied to the s-CO2 power cycle layout. To investigate the cycle performance changes of adopting the novel technology, a framework for defining the efficiency of the isothermal compressor is revised and suggested. This study demonstrates how the compression work for the isothermal compressor is reduced, up to 50%, compared to that of the conventional compressor under varying compressor inlet conditions. Furthermore, the simple recuperated and recompression Brayton cycle layouts using s-CO2 as a working fluid are evaluated for the CSP applications. Results show that for compressor inlet temperatures (CIT) near the critical point, the recompression Brayton cycle using an isothermal compressor has 0.2–1.0% point higher cycle thermal efficiency compared to its reference cycle. For higher CIT values, the recompression cycle using an isothermal compressor can perform above 50% in thermal efficiency for a wider range of CIT than the reference cycle. Adopting an isothermal compressor in the s-CO2 layout can imply larger heat exchange area for the compressor which requires further development.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Saeb M. Besarati ◽  
D. Yogi Goswami

A number of studies have been performed to assess the potential of using supercritical carbon dioxide (S-CO2) in closed-loop Brayton cycles for power generation. Different configurations have been examined among which recompression and partial cooling configurations have been found very promising, especially for concentrating solar power (CSP) applications. It has been demonstrated that the S-CO2 Brayton cycle using these configurations is capable of achieving more than 50% efficiency at operating conditions that could be achieved in central receiver tower type CSP systems. Although this efficiency is high, it might be further improved by considering an appropriate bottoming cycle utilizing waste heat from the top S-CO2 Brayton cycle. The organic Rankine cycle (ORC) is one alternative proposed for this purpose; however, its performance is substantially affected by the selection of the working fluid. In this paper, a simple S-CO2 Brayton cycle, a recompression S-CO2 Brayton cycle, and a partial cooling S-CO2 Brayton cycle are first simulated and compared with the available data in the literature. Then, an ORC is added to each configuration for utilizing the waste heat. Different working fluids are examined for the bottoming cycles and the operating conditions are optimized. The combined cycle efficiencies and turbine expansion ratios are compared to find the appropriate working fluids for each configuration. It is also shown that combined recompression-ORC cycle achieves higher efficiency compared with other configurations.


Author(s):  
Saeb M. Besarati ◽  
D. Yogi Goswami

A number of studies have been performed to assess the potential of using supercritical carbon dioxide (S-CO2) in closed-loop Brayton cycles for power generation. Different configurations have been examined among which recompression and partial cooling configurations have been found very promising, especially for concentrating solar power (CSP) applications. It has been demonstrated that the S-CO2 Brayton cycle using these configurations is capable of achieving more than 50% efficiency at operating conditions that could be achieved in central receiver tower type CSP systems. Although this efficiency is high, it might be further improved by considering an appropriate bottoming cycle utilizing waste heat from the top S-CO2 Brayton cycle. The organic Rankine cycle (ORC) is one alternative proposed for this purpose, however, its performance is substantially affected by the selection of the working fluid. In this paper, a simple S-CO2 Brayton cycle, a recompression S-CO2 Brayton cycle, and a partial cooling S-CO2 Brayton cycle are first simulated and compared with the available data in the literature. Then, an ORC is added to each configuration for utilizing the waste heat. Different working fluids are examined for the bottoming cycles and the operating conditions are optimized. The combined cycle efficiencies and turbine expansion ratios are compared to find the appropriate working fluids for each configuration. It is also shown that combined recompression-ORC cycle achieves higher efficiency compared with other configurations.


Solar Energy ◽  
2020 ◽  
Vol 207 ◽  
pp. 144-156
Author(s):  
Luis F. González-Portillo ◽  
Javier Muñoz-Antón ◽  
José M. Martínez-Val

Sign in / Sign up

Export Citation Format

Share Document