A new hybrid system composed of high-temperature proton exchange fuel cell and two-stage thermoelectric generator with Thomson effect: Energy and exergy analyses

Energy ◽  
2020 ◽  
Vol 195 ◽  
pp. 117000 ◽  
Author(s):  
Xinru Guo ◽  
Houcheng Zhang ◽  
Jiatang Wang ◽  
Jiapei Zhao ◽  
Fu Wang ◽  
...  
2021 ◽  
Vol 13 (22) ◽  
pp. 12515
Author(s):  
Gabriele Loreti ◽  
Andrea Luigi Facci ◽  
Stefano Ubertini

High-temperature proton-exchange membrane fuel cells are a promising technology for distributed power generation thanks to their high-power density, high efficiency, low emissions, fast start-up, and excellent dynamic characteristics, together with their high tolerance to CO poisoning (i.e., CO in the feed up to 3%). In this paper, we present an innovative, simple, and efficient hybrid high-temperature proton-exchange membrane fuel cell gas turbine combined heat and power system whose fuel processor relies on partial oxidation. Moreover, we demonstrate that the state-of-the-art fuel processors based on steam reformation may not be the optimal choice for high-temperature proton-exchange membrane fuel cells’ power plants. Through steady-state modeling, we determine the optimal operating conditions and the performance of the proposed innovative power plant. The results show that the proposed hybrid combined heat and power system achieves an electrical efficiency close to 50% and total efficiency of over 85%, while a state-of-the-art system based on steam reformation has an electrical efficiency lower than 45%. The proposed innovative plant consists of a regenerative scheme with a limited power ratio between the turbine and fuel cell and limited optimal compression ratio. Therefore, micro-gas turbines are the most fitting type of turbomachinery for the hybrid system.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1000
Author(s):  
Guoxiao Xu ◽  
Juan Zou ◽  
Zhu Guo ◽  
Jing Li ◽  
Liying Ma ◽  
...  

Although sulfonic acid (SA)-based proton-exchange membranes (PEMs) dominate fuel cell applications at low temperature, while sulfonation on polymers would strongly decay the mechanical stability limit the applicable at elevated temperatures due to the strong dependence of proton conduction of SA on water. For the purpose of bifunctionally improving mechanical property and high-temperature performance, Nafion membrane, which is a commercial SA-based PEM, is composited with fabricated silica nanofibers with a three-dimensional network structure via electrospinning by considering the excellent water retention capacity of silica. The proton conductivity of the silica nanofiber–Nafion composite membrane at 110 °C is therefore almost doubled compared with that of a pristine Nafion membrane, while the mechanical stability of the composite Nafion membrane is enhanced by 44%. As a result, the fuel cell performance of the silica nanofiber-Nafion composite membrane measured at high temperature and low humidity is improved by 38%.


2015 ◽  
Vol 3 (16) ◽  
pp. 8847-8854 ◽  
Author(s):  
Zhibin Guo ◽  
Ruijie Xiu ◽  
Shanfu Lu ◽  
Xin Xu ◽  
Shichun Yang ◽  
...  

A novel submicro-pore containing proton exchange membrane is designed and fabricated for application in high-temperature fuel cells.


Sign in / Sign up

Export Citation Format

Share Document