Modelling and experimental validation of an EV torque distribution strategy towards active safety and energy efficiency

Energy ◽  
2021 ◽  
pp. 121953
Author(s):  
Hongqian Wei ◽  
Qiang Ai ◽  
Wenqiang Zhao ◽  
Youtong Zhang
2012 ◽  
Vol 546-547 ◽  
pp. 212-217
Author(s):  
Xu Dong Wang ◽  
Hai Xing Zhang ◽  
Shu Cai Yang ◽  
Yong Qin Zhou ◽  
Jin Fa Liu

Based on the configuration and working state analysis of the ISG hybrid electric cars, the torque distribution strategy of a hybrid system is designed to delineate the maximum and minimum work torque curves of the engine, achieve optimization of engine’s range so as to make sure the target torque of the engine and ISG motor, and finally through the calibrated driving characteristics MAP and battery SOC state to achieve the calculation of total vehicle torque demand. Taking the Hafei Saibao ISG hybrid car as a test model, the test of fuel economy and emissions carried out under specific conditions showed that using the torque distribution strategy has increased by 12.8 % of the ISG hybrid car fuel economy and improved emissions performance to some extent compared to the traditional Hafei Saibao cars.


2020 ◽  
Vol 54 (6) ◽  
pp. 501-512
Author(s):  
Chuanwei Zhang ◽  
Rongbo Zhang ◽  
Rui Wang ◽  
Bo Chang ◽  
Jian Ma

Author(s):  
Michael Lorenz ◽  
Burkhard Corves ◽  
Martin Riedel

In general the mechanical handling of objects in space is performed by manipulators, whose number of actuators is consistent with the number of required degrees of freedom. In addition, manipulators can be equipped with redundant drives, providing the manipulator with more actuators than the mobility actually requires. Thus, an active distribution of drive torques is enabled. Accordingly, this research intends to analyze the effects of torque distribution in over-actuated manipulators relating to load-optimized and energy-efficient handling. By developing torque distribution strategies the maximum torque levels can be reduced and the required drive power thus be decreased. This results in an increased drive utilization, which improves the energy-efficiency of the handling system. On this basis, an innovative handling concept is analyzed, which represents an over-determined system given the number of actuators. Hence, it is shown that the drive utilization of manipulators can be significantly improved by means of actuation redundancy. For this purpose different mathematical optimization approaches are analyzed, which solve the over-actuated system with defined optimization targets. Here, the optimal torque distribution is found using an algorithm, which minimizes the maximum torque for each object position. The results demonstrate the efficiency of active torque distribution in terms of over-actuated manipulators. For a further approach it is planned to develop control methods including optimized torque distribution strategies in order to improve the performance and the energy efficiency of the entire manipulator.


2008 ◽  
Vol 13 (3) ◽  
pp. 323-329
Author(s):  
Hu Zhong ◽  
Guo-qiang Ao ◽  
Feng Wang ◽  
Zi-lin Ma ◽  
Xiao-jian Mao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document