maximum torque
Recently Published Documents


TOTAL DOCUMENTS

613
(FIVE YEARS 168)

H-INDEX

31
(FIVE YEARS 6)

2022 ◽  
Vol 8 (2) ◽  
pp. 316-319
Author(s):  
Jusnita

  Roller Rocker Arm is important for transmitting signals and determining work efficiency which is the result of technological developments from ordinary rocker arms. The purpose of this study was to compare the use of conventional rocker arm with rocker arm roller on power, torque, exhaust emissions, compression on a motorcycle engine. The research method used is changing the fuel system, ignition system, changing the valve mechanism. The maximum torque on the conventional rocker arm occurs at 2995 rpm with a value of 10.92 Nm. Maximum torque decreases with increasing engine speed. The decrease in power at high speed occurs due to the influence of the volume of the fuel and air mixture which tends to decrease. The highest fuel consumption occurs at 7000 rpm engine speed in a conventional rocker arm of 0.124 kg/kWh, so the rocker arm roller is more efficient than the conventional rocker arm. Fuel consumption rocker arm roller rotation 7000 rpm 0.028 kg/kWh. While the conventional rocker arm fuel consumption at 7000 rpm 0.124 kg/kWh. Exhaust emissions, the rocker arm roller is environmentally friendly compared to the conventional rocker arm CO2 rocker arm roller only produces 5.2%, while the conventional rocker arm test results after the average CO2 value reaches 5.3%. The results of testing the two rocker arms on compression are the same at 90 Psi and 6.2kg/ from the standard size of 10-11kg/  


2022 ◽  
Vol 52 (1) ◽  
Author(s):  
Rovian Bertinatto ◽  
José Fernando Schlosser ◽  
Gilvan Moisés Bertollo ◽  
Daniela Herzog ◽  
Leonardo Casali ◽  
...  

ABSTRACT: Over the past few years, changes have been observed in the behavior of typical performance curves, after higher technology has been incorporated into the agricultural tractor engines, either to satisfy the ceiling of the new pollutant gas emission limits or to achieve better efficiency. The aim of this study was to assess the typical performance behavior of an agricultural tractor engine, possessing electronic injection management, turbocharger, aftercooler and EGR (Exhaust Gas Recirculation) treatment system. An analysis was done of the information the manufacturers provided, in terms of nominal power, maximum power and maximum power with Booster, maximum torque and maximum torque with Booster. From the results, the percentage difference between the nominal power and maximum power were found to hover anywhere from 1.49 to 11.97%, for the same manufacturer, 0% in another manufacturer and 9% in a third manufacturer, for all the models. Similar results were noted for the data reported on the maximum torque and maximum torque with Booster, giving 0.62% as the minimum value, 7.44% as the average value and 12.65% as the maximum value for the entire series.


Author(s):  
Ayaulym Rakhmatulina ◽  
Nurbibi Imanbayeva ◽  
Sayat Ibrayev ◽  
Assemgul Uderbayeva ◽  
Aiman Nurmaganbetova

The paper presents an analytical solution to the problem of optimal dynamic balancing of the six-link converting mechanism of the sucker-rod pumping unit. This problem is solved numerically using a computer model of dynamics, namely by selecting the value of the correction factor k. Here we will consider an analytical method for solving this problem, that is, we find the location of the counterweight on the third link of the six-link converting mechanism for balancing. To solve the problem, we use the principle of possible displacement and write an equation where we express the torque through the unknown parameter of the counterweight. Further, such a value of the unknown parameter is found, at which the minimum of the root-mean-square value of torque M is reached. From the condition of the minimum of the function, we obtain an equation for determining the location of the counterweight. Thus, we obtain an analytical solution to the problem of optimal dynamic balancing of the six-link converting mechanism of the sucker-rod pumping drive in various settings.  According to the results, it was found that with the combined balancing method, the value of the maximum torque M and the value of the maximum power are reduced by 20 % than when the counterweight is placed on the third link of the converting mechanism, as well as when the value of the maximum torque is determined through the correction factor k. In practice, balancing is carried out empirically by comparing two peaks of torque M on the crank shaft per cycle of the mechanism movement. Solving the analytical problem, we determine the exact location of the counterweight.


Author(s):  
Vladimir Malachschenko ◽  
Olexsandr Orel ◽  
Vоlodimir Fedik

Based on previous research results, a more advanced design of ball coupling of freewheel (BCFH) of axial action for starters of internal combustion engines is developed, force interaction and maximum torque for the case when the grooves of one half-clutch are straight, which simplifies manufacturing technology. Calculation schemes for different positions of the main elements are offered, loading of all working surfaces of the new coupling taking into account friction of balls with lateral surfaces of grooves is established.  


Author(s):  
Budi Azhari ◽  
Pudji Irasari ◽  
Puji Widiyanto

<span lang="EN-US">This paper proposes a design of a 5 kW, 100 volts brushless direct current (DC) (BLDC) motor using an existing stator connected to an inverter and equipped with Hall sensors. The stator is a radial flux motor-type with 54 slots positioned at the outer side of the machine. In this case, the design is focused on the rotor components and winding configuration. However, the inverter aspects are also taken into account. At the same time, it considers the expected outputs: voltage, power, speed; and some limitations: maximum current and flux density. Finite element magnetic-based simulation is performed to extract the magnetic flux distribution, and analytical calculations are then conducted to obtain the output values and characteristics. The results show the BLDC motor at nominal speed produces 5.1 kW output power with 122.34 V voltages, 97.09% efficiency, and torque of 32.82 Nm. The maximum torque and rotation speeds are 51.39 Nm and 4,150 rpm respectively, while the peak-to-peak cogging force is 1.35 Nm. It can be concluded that the BLDC motor has a good performance and is compatible with the connected inverter.</span>


Author(s):  
I Nengah Ludra Antara ◽  
◽  
I Nyoman Sutarna ◽  
Ida Bagus Puspa Indra ◽  
◽  
...  

Carburetors are one of the important components on motorcycles, through modification of replacing Standard Carburetor with Racing Carburetor is one of the ways to improve engine performance. There are several types and sizes of PE, namely PE 24, PE 28, PE 38. PE 28 carburetor is often used on racing motorbikes, both Drag bikes and Roodrace bikes, where this carburetor is able to produce maximum engine performance. By testing the maximum power using a standard carburetor found at 7000 rpm engine speed, which is 11.3 HP, while the maximum power testing using a PE 28 carburetor is found at 7000 rpm engine speed, which is 11.7 HP. For testing the maximum torque using a standard carburetor found at 6000 rpm engine speed, which is 11.7 N.m, while the maximum torque testing using a PE 28 carburetor is found at 7000 rpm engine speed, which is 11.8 N.m. The use of PE 28 carburetor on a 4 stroke motorcycle greatly affects the amount of fuel consumption, it is because the PE 28 carburetor is a racing carburetor that is very suitable for those who want top speed. In addition, the advantage of the PE 28 carburetor is that it is able to improve engine performance because the type of carburetor is different from the standard and there are changes in the dimensions of the venturi hole and intake manifold, so that it can fog up more air and fuel to be brought into the combustion chamber or into the engine cylinder.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2785
Author(s):  
Anton Dianov ◽  
Alecksey Anuchin

The efficient control of permanent magnet synchronous motors (PMSM) requires the development of a technique for loss optimization. The best approach is the implementation of power loss minimization algorithms, which are hard to model and design. Therefore, the developers typically involve maximum torque per ampere (MTPA) control, which optimizes Joule loss only. The conventional MTPA control requires knowledge of motor parameters and can only properly operate when these parameters are constant. However, motor parameters vary depending on operating conditions; thus, conventional techniques cannot be used. Furthermore, many industrial drives are designed for self-commissioning, and they do not have prior information on motor parameters. In order to solve this problem, various MTPA-seeking techniques, which track the minimum of motor current, have been developed. The dynamic performance between these seeking algorithms and maximum deviation from the true MTPA trajectory are defined by the constraints in most cases, in which proper design improves the dynamic behavior of MTPA-seeking algorithms. This paper considers a PMSM, which was designed to operate in the saturation area and whose MTPA trajectory significantly deviates from the same curve constructed for the initial unsaturated parameters. This paper considers existing approaches, explains their pros and cons, and demonstrates that these methods do not utilize full potential of the motor. A new constraint design was proposed and explained step by step. The experiment verifies the proposed technique and demonstrates improvements in efficiency and dynamic behavior of the seeking algorithm.


2021 ◽  
Vol 1199 (1) ◽  
pp. 012035
Author(s):  
M Pajtášová ◽  
B Pecušová ◽  
S Ďurišová ◽  
D Ondrušová ◽  
Z Mičicová ◽  
...  

Abstract The presented work was dealing with the study of the commercial filler influence change in rubber blend by an alternative filler based on the clay mineral - illite. The focus of the presented work was aimed at the study of selected curing characteristics of rubber blend with addition of clay mineral filler and physico-mechanical properties of prepared vulcanizates. Curing characteristics, the processing safety, minimum and maximum torque, optimal curing time and curing rate coefficient were determined during the curing experiment phase. Selected physico-mechanical properties were given by the determination of hardness, tensibility and tensile strength. The obtained results proved the possibility of partial commercial filler replacement by an alternative filler and the positive effect of clay mineral on resulting important properties in rubber industry.


2021 ◽  
Vol 1199 (1) ◽  
pp. 012037
Author(s):  
Z Mičicová ◽  
S Božeková ◽  
M Pajtášová ◽  
D Ondrušová

Abstract The study deals with the examination of the rheological behaviour of rubber blends which were filled with bentonite. The filler - polymer as well as the filler - filler interactions were studied and determined from the frequency sweep and strain sweep rheological measurements. The used natural bentonite was extracted from the locality called Jelsovy Potok. The natural bentonite had a fine fraction with a particle size of 15μm a 45 μm and it was added into rubber blends as a partial replacement of commonly used filler. The rubber blends were characterised on the basis of curing characteristics (minimum torque ML, maximum torque MH, optimum time of cure t(c90), processing safety of blend ts,). Moreover, the complex viscosity and Payne effect were also specified. The required measurements were done by using PRPA 2000.


Sign in / Sign up

Export Citation Format

Share Document