Quantitative impact of a micro-cylinder as a passive flow control on a horizontal axis wind turbine performance

Energy ◽  
2021 ◽  
pp. 122654
Author(s):  
Wafaa Mostafa ◽  
Abouelmagd Abdelsamie ◽  
Momtaz Sedrak ◽  
Dominique Thévenin ◽  
Mohamed H. Mohamed
Proceedings ◽  
2018 ◽  
Vol 2 (23) ◽  
pp. 1452 ◽  
Author(s):  
Aitor Saenz-Aguirre ◽  
Sergio Fernandez-Resines ◽  
Iñigo Aramendia ◽  
Unai Fernandez-Gamiz ◽  
Ekaitz Zulueta ◽  
...  

Several flow control devices have been studied in recent years. Majority of them were designed firstly for aeronautical purposes. At present many research is aimed to introduce these devices in wind turbines (WTs) in order to optimize their aerodynamic performance. The main goal of the present work is to analyze the influence of passive flow control devices, Vortex Generators and Gurney Flaps, on the Annual Energy Production (AEP) of a large Horizontal Axis Wind Turbine (HAWT). Consequently, BEM based calculations were performed in order to study their effect on the NREL offshore 5 MW Baseline Wind Turbine. Obtained results show an increment in the maximum value of the power coefficient, Cp_max, and a considerable improvement of the AEP.


2021 ◽  
Author(s):  
Elena-Alexandra Chiulan ◽  
Costin Ioan Cosoiu ◽  
Andrei-Mugur Georgescu ◽  
Anton Anton ◽  
Mircea Degeratu

2019 ◽  
Vol 11 (11) ◽  
pp. 168781401989211
Author(s):  
Deyaa Nabil Elshebiny ◽  
Ali AbdelFattah Hashem ◽  
Farouk Mohammed Owis

This article introduces novel blade tip geometric modification to improve the aerodynamic performance of horizontal-axis wind turbine by adding auxiliary cascading blades toward the tip region. This study focuses on the new turbine shape and how it enhances the turbine performance in comparison with the classical turbine. This study is performed numerically for National Renewable Energy Laboratory Phase II (non-optimized wind turbine) taking into consideration the effect of adding different cascade configurations on the turbine performance using ANSYS FLUENT program. The analysis of single-auxiliary and double-auxiliary cascade blades has shown an impact on increasing the turbine power of 28% and 76%, respectively, at 72 r/min and 12.85 m/s of wind speed. Knowing that the performance of cascaded wind turbine depends on the geometry, solidity and operating conditions of the original blade; therefore, these results are not authorized for other cases.


Wind Energy ◽  
2019 ◽  
Vol 22 (12) ◽  
pp. 1800-1824
Author(s):  
Ying Wang ◽  
Gaohui Li ◽  
Dahai Luo ◽  
Diangui Huang

2020 ◽  
pp. 0309524X2096139
Author(s):  
Fangrui Shi ◽  
Yingqiao Xu ◽  
Xiaojing Sun

In this paper, a three-dimensional numerical simulation of the aerodynamic performance of a horizontal axis wind turbine (HAWT) whose blades are equipped with a new active flow control concept called Co-Flowing Jet (CFJ) is carried out. Numerical results show that the use of CFJ over the blade suction surface can effectively delay flow separation, thus improving the net torque and power output of HAWT. Besides, this increment in the net power produced by the turbine is considerably higher than the power consumed by the CFJ. Thus, the overall efficiency of the HAWT can be greatly increased. Furthermore, influences of different CFJ operating parameters including location of injection port, jet momentum coefficient and slot length on the performance enhancement of a HAWT are also systematically studied and the optimal combination of these parameters to obtain the best possible turbine efficiency throughout a range of different wind speeds has been identified.


1986 ◽  
Vol 108 (4) ◽  
pp. 400-406 ◽  
Author(s):  
A. A. Afjeh ◽  
T. G. Keith

Based on the assumption that wake geometry of a horizontal-axis wind turbine closely resembles that of a hovering helicopter, a method is presented for predicting the performance of a horizontal-axis wind turbine. A vortex method is used in which the wake is composed of an intense tip-vortex and a diffused inboard wake. Performance parameters are calculated by application of the Biot-Savart law along with the Kutta-Joukowski theorem. Predictions are shown to compare favorably with values from a more complicated full free wake analysis and with existing experimental data, but require more computational effort than an existing fast free wake method.


2001 ◽  
Vol 25 (6) ◽  
pp. 501-506 ◽  
Author(s):  
Ahmet Z. Sahin ◽  
Ahmed Z. Al-Garni ◽  
Abdulghani Al-Farayedhi

Sign in / Sign up

Export Citation Format

Share Document