The prediction of horizontal axis wind turbine performance in yawed flow using an unsteady prescribed wake model

Author(s):  
F. N. Coton ◽  
T Wang
2019 ◽  
Vol 11 (11) ◽  
pp. 168781401989211
Author(s):  
Deyaa Nabil Elshebiny ◽  
Ali AbdelFattah Hashem ◽  
Farouk Mohammed Owis

This article introduces novel blade tip geometric modification to improve the aerodynamic performance of horizontal-axis wind turbine by adding auxiliary cascading blades toward the tip region. This study focuses on the new turbine shape and how it enhances the turbine performance in comparison with the classical turbine. This study is performed numerically for National Renewable Energy Laboratory Phase II (non-optimized wind turbine) taking into consideration the effect of adding different cascade configurations on the turbine performance using ANSYS FLUENT program. The analysis of single-auxiliary and double-auxiliary cascade blades has shown an impact on increasing the turbine power of 28% and 76%, respectively, at 72 r/min and 12.85 m/s of wind speed. Knowing that the performance of cascaded wind turbine depends on the geometry, solidity and operating conditions of the original blade; therefore, these results are not authorized for other cases.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3900 ◽  
Author(s):  
Jing Dong ◽  
Axelle Viré ◽  
Carlos Simao Ferreira ◽  
Zhangrui Li ◽  
Gerard van Bussel

A modified free-wake vortex ring model is proposed to compute the dynamics of a floating horizontal-axis wind turbine, which is divided into two parts. The near wake model uses a blade bound vortex model and trailed vortex model, which is developed based on vortex filament method with straight lifting lines assumption. By contrast, the far wake model is based on the vortex ring method. The proposed model is a good compromise between accuracy and computational cost, for example when compared with more complex vortex methods. The present model is used to assess the influence of floating platform motions on the performance of a horizontal-axis wind turbine rotor. The results are validated on the 5 MW NREL rotor and compared with other aerodynamic models for the same rotor subjected to different platform motions. The results show that the proposed method is reliable. In addition, the proposed method is less time consuming and has similar accuracy when comparing with more advanced vortex based methods.


1986 ◽  
Vol 108 (4) ◽  
pp. 400-406 ◽  
Author(s):  
A. A. Afjeh ◽  
T. G. Keith

Based on the assumption that wake geometry of a horizontal-axis wind turbine closely resembles that of a hovering helicopter, a method is presented for predicting the performance of a horizontal-axis wind turbine. A vortex method is used in which the wake is composed of an intense tip-vortex and a diffused inboard wake. Performance parameters are calculated by application of the Biot-Savart law along with the Kutta-Joukowski theorem. Predictions are shown to compare favorably with values from a more complicated full free wake analysis and with existing experimental data, but require more computational effort than an existing fast free wake method.


Energy ◽  
2021 ◽  
pp. 122654
Author(s):  
Wafaa Mostafa ◽  
Abouelmagd Abdelsamie ◽  
Momtaz Sedrak ◽  
Dominique Thévenin ◽  
Mohamed H. Mohamed

2001 ◽  
Vol 25 (6) ◽  
pp. 501-506 ◽  
Author(s):  
Ahmet Z. Sahin ◽  
Ahmed Z. Al-Garni ◽  
Abdulghani Al-Farayedhi

2013 ◽  
Vol 448-453 ◽  
pp. 1716-1720
Author(s):  
Rui Yang ◽  
Jiu Xin Wang ◽  
Sheng Long Zhang

A computational method based on nonlinear wake model was established for horizontal axis wind turbines aerodynamic performance prediction. This method makes use of finite difference method to solve the integral differential equation of the model, the induced velocity of wake vortex can be calculated from equations and compared with the induced velocity of wake vortex in linear model. The comparison between the calculated results of wind turbine under axis flow condition, including tip vortex geometry and aerodynamic performance, and available experimental data shows that this method is suitable for wind turbine aerodynamic performance analysis. Finally, a series of numerical calculations were made to investigate the change of wake geometry and aerodynamic performance of the wind turbine when yawing and pitch angle increasing, which provide foundations for aerodynamic optimization design of horizontal axis wind turbines.


2016 ◽  
Vol 78 (8-4) ◽  
Author(s):  
Muhammad Hafidz Ariffudin ◽  
Fazila Mohd Zawawi ◽  
Haslinda Mohamed Kamar ◽  
Nazri Kamsah

There has been an increasing demand for renewable energy in order to create a sustainable society as the non-renewable energies such as fossil fuel resources are limited. Modern wind turbines claim that they have a high efficiency in term of wind energy extraction. However, there are still having losses due to tip vortex causing to a reduction in performance.  Motivated by this reason, this research aims at exploring the possibility to increase the performance of low speed small-scaled horizontal axis wind turbine with various tip devices using Computational Fluid Dynamics (CFD). Four wind turbine blades with different tip devices which consist of sword tip, swept tip, upwind winglet and downwind winglet are compared with wind turbine blade without tip device in term of CP. The application of tip device can significantly reduce induced tip vortex and improve wind turbine performance. For TSR below than 4, adding a sword tip increases CP about 7.3%, swept tip increases CP about 9.1%, upwind winglet increases CP about 1.8% and downwind winglet increases CP about 3.2%. It is observed that the best tip device for low wind speed application is swept tip as it give the highest performance increment compared to without tip device.


Sign in / Sign up

Export Citation Format

Share Document