Performance improvement of solar-assisted ground-source heat pumps with parallelly connected heat sources in heating-dominated areas

Energy ◽  
2022 ◽  
Vol 240 ◽  
pp. 122807
Author(s):  
Minwoo Lee ◽  
Dongchan Lee ◽  
Myeong Hyeon Park ◽  
Yong Tae Kang ◽  
Yongchan Kim
2009 ◽  
Vol 4 (1) ◽  
pp. 146-168
Author(s):  
Joyce Cooper ◽  
Tarja Häkkinen ◽  
Sirje Vares ◽  
Jenni Jahn ◽  
Sakari Pulakka

Given the growing interest in ground source heat pump and distributed heating installations in general for the reduction of greenhouse gas emissions, technology implementation planning can benefit from the simultaneous consideration of building renovations. Here, a method for identifying and evaluating scenarios based on cost and greenhouse gas emissions is presented. The method is demonstrated for a case study in Vaasa Finland. The case study considers the insulation of the walls, roof, and base floor and the replacement of windows based on 2003 and 2010 Finnish building codes simultaneously with the possible replacement of existing heat sources with ground source heat pumps. Estimates of changes in heat demand for consecutive renovations are combined with data on renovation, installation, heating costs, and life cycle greenhouse gas emissions data for the current and proposed heat sources. Preferred scenarios are identified and evaluated by building type, construction decade, and current heating source. The results are then placed within the contexts of the Vaasa building stock and policy theory.


2017 ◽  
Vol 170 (3) ◽  
pp. 103-115 ◽  
Author(s):  
Alexis Ali ◽  
Mostafa Mohamed ◽  
Mohamad Abdel-Aal ◽  
Alma Schellart ◽  
Simon Tait

2020 ◽  
Author(s):  
Eric Wagner ◽  
Benjamin McDaniel ◽  
Dragoljub Kosanovic

Ground-source heat pump (GSHP) systems have been implemented at large scales on several university campuses to provide heating and cooling. In this study, we test the idea that a GSHP system, as a replacement for an existing Combined Heat and Power (CHP) heating system coupled with conventional cooling systems, could reduce CO2 emissions, and provide a cost benefit to a university campus. We use the existing recorded annual heating and cooling loads supplied by the current system and an established technique of modeling the heat pumps and borehole heat exchangers (BHEs) using a TRNSYS model. The GSHP system is modeled to follow the parameters of industry standards and sized to provide an optimal balance of capital and operating costs. Results show that despite a decrease in heating and cooling energy usage and CO2 emissions are achieved, a significant increase in electric demand and purchased electricity result in an overall cost increase. These results highlight the need for thermal energy storage, onsite distributed energy resources and/or demand response in cases where electric heat pumps are used to help mitigate electric demand during peak periods.


2009 ◽  
Vol 41 (6) ◽  
pp. 587-595 ◽  
Author(s):  
D.P. Jenkins ◽  
R. Tucker ◽  
R. Rawlings

Sign in / Sign up

Export Citation Format

Share Document