Influence of shock pre-strain on the dynamic mechanical behavior and adiabatic shearing failure of the Ti–6Al–4V alloy with lamellar microstructure

2020 ◽  
Vol 111 ◽  
pp. 104500
Author(s):  
Yu Ren ◽  
Shimeng Zhou ◽  
Zhiwei Wang
2020 ◽  
Vol 837 ◽  
pp. 51-57
Author(s):  
Shi Meng Zhou ◽  
Zhi Wei Wang ◽  
Yu Ren

Ti–6Al–4V alloy (Ti64) with different microstructures was first preshocked at ~6–13 GPa and then compression reloaded at 4×103s-1 to investigate the effect of microstructure and shock prestrain on the dynamic mechanical behavior of this alloy. The strengthening effect caused by shock prestrain is weaker than that introduced by the uniaxial stress compression during dynamic reloading process regardless of microstructure type and impact stress amplitude. However, the shock-induced enhancement ratio is higher in Ti64 having bimodal microstructures or the lamellar microstructure with wide α-platelets. These mechanical behaviors exhibited by postshock materials are closely related to the shock-induced microstructure evolution. Dislocations more tend to nucleate and interact in large-sized α phases such as equiaxed primary α and wide α-platelets. The generation of high-density micro-defects during the propagation of shock waves results in the improvement of strength but degradation of ductility of Ti64 during dynamic reloading process.


Author(s):  
Arun Prasath Kanagaraj ◽  
Amuthakkannan Pandian ◽  
Veerasimman Arumugaprabu ◽  
Rajendran Deepak Joel Johnson ◽  
Vigneswaran Shanmugam ◽  
...  

1991 ◽  
Vol 42 (6) ◽  
pp. 1647-1657 ◽  
Author(s):  
J. L. Gómez Ribelles ◽  
J. Mañó Sebastià ◽  
R. Martí Soler ◽  
M. Monleón Pradas ◽  
A. Ribes Greus ◽  
...  

2011 ◽  
Vol 28 (1) ◽  
pp. 201-210 ◽  
Author(s):  
Yun-Liang Li ◽  
Ming-Yu Lu ◽  
Hui-Feng Tan ◽  
Yi-Qiu Tan

1963 ◽  
Vol 36 (2) ◽  
pp. 407-421 ◽  
Author(s):  
Glenn E. Warnaka

Abstract Many common elastomeric materials have two ranges of dynamic-mechanical behavior. Such materials behave as viscoelastomers at very small strains and as plastoelastomers at strains of practical engineering interest. The change from viscoelastic to plastoelastic behavior occurs at dynamic strain amplitudes of 0.001 inches per inch to 0.005 inches per inch. In the plastoelastic range, the dynamic elastic modulus decreases with increasing dynamic strain amplitude. Loss factor reaches a maximum in the plastoelastic range.


Sign in / Sign up

Export Citation Format

Share Document