Study of pitting corrosion under actual operating conditions of a first stage compressor blade

Author(s):  
Yousef mollapour ◽  
Esmaeil Poursaeidi ◽  
Omid Pedram
2005 ◽  
Vol 2005 (14) ◽  
pp. 2232-2247
Author(s):  
Michael S. Demko ◽  
Frank Coughenour ◽  
John J. Pacifici ◽  
Sam Jeyanayagam ◽  
David T. Redmon

2013 ◽  
Vol 391 ◽  
pp. 207-212
Author(s):  
Maciej Bajerlein

This paper presents the investigations, whose aim was to determine the influence of the operation of electric and mechanical compressors on the energy consumption of city buses in public transport. The tests were performed on pneumatic systems used in city transit vehicles whose underlying component is a compressor generating pressure for the brake and suspension systems. Owing to the application of a portable analyzer - SEMTECH DS the emissions (with a secondly resolution) of CO, HC, NOx, CO2 in the exhaust gases were measured. The on-road emission tests were performed in the actual operating conditions in SORT driving tests. These tests reflect the actual vehicle operation in a real task through preset procedures of their realization and measurements determining the energy consumption and exhaust emissions or the influence of the vehicle accessories and all variables (vehicle speed, engine load, acceleration or distance covered) on the total energy balance. The on-road tests were performed on a runway of the Bednary airstrip in Poland.


Author(s):  
Wesley R. Bussman ◽  
Charles E. Baukal

Because process heaters are typically located outside, their operation is subject to the weather. Heaters are typically tuned at a given set of conditions; however, the actual operating conditions may vary dramatically from season to season and sometimes even within a given day. Wind, ambient air temperature, ambient air humidity, and atmospheric pressure can all significantly impact the O2 level, which impacts both the thermal efficiency and the pollution emissions from a process heater. Unfortunately, most natural draft process burners are manually controlled on an infrequent basis. This paper shows how changing ambient conditions can considerably impact both CO and NOx emissions if proper adjustments are not made as the ambient conditions change. Data will be presented for a wide range of operating conditions to show how much the CO and NOx emissions can be affected by changes in the ambient conditions for fuel gas fired natural draft process heaters, which are the most common type used in the hydrocarbon and petrochemical industries. Some type of automated burner control, which is virtually non-existent today in this application, is recommended to adjust for the variations in ambient conditions.


2020 ◽  
Vol 992 ◽  
pp. 770-774
Author(s):  
A. Golikov ◽  
V. Pankratov ◽  
M. Barulina

This research deals with the prospects for application of modern nanomaterials as exemplified by carbon nanotubes for development of new classes of precision measuring instruments or for significant improvement of the performance of existing sensors and systems based on sensors. Carbon nanotubes have been known since the end of the 20th century, but production of high-quality carbon nanotubes on a commercial scale has become possible relatively recently, owing, inter alia, to researches of Russian scientists. Carbon nanotubes have unique properties which hold much promise for their use in different areas of science and technology. Thus, use of nanotubes in precision instrument engineering can solve a number of problems, such as increase in reliability, accuracy, durability, weight and size reduction, etc. Fiber optic gyroscopes based on microstructured optical fiber are considered in this research as an example to demonstrate that use of carbon nanotubes allows significant reduction of the temperature differences in the fiber and that such reduction, in its turn, leads to lower dependence of the FOG characteristics on the temperature effects under actual operating conditions. A mathematical model of the equivalent thermal conductivity of a microstructured fiber loop, all or some channels of which are filled with carbon nanotubes, has been developed in this research. A comparative analysis has been made of the distribution of heat in coils with the considered and traditional fibers under different temperature effects – harmonic, random and stepped.


2020 ◽  
Vol 173 ◽  
pp. 105405
Author(s):  
Łukasz Rymaniak ◽  
Piotr Lijewski ◽  
Michalina Kamińska ◽  
Paweł Fuć ◽  
Beata Kurc ◽  
...  

2020 ◽  
Vol 8 (27) ◽  
pp. 13763-13769
Author(s):  
Bonjae Koo ◽  
Jongsu Seo ◽  
Jun Kyu Kim ◽  
WooChul Jung

Isovalent doping is a practical solution for ensuring surface stability of Sr-containing perovskite oxides for solid oxide fuel cell O2-electrodes under actual operating conditions.


Author(s):  
Bin Wu ◽  
Andrew M. Arnold ◽  
Eugene Arnold ◽  
George Downey ◽  
Chenn Q. Zhou

In the steelmaking industry, reheating furnaces are used to heat the billets or blooms to the rolling temperature; the uniformity of the temperature in the furnace determines billet quality. In order to obtain a better understanding of the furnace operation, which influences the temperature distribution; Computational Fluid Dynamics (CFD) analysis is conducted to examine the transient and three dimensional temperature fields in a reheating furnace using the commercial software Fluent®. A number of actual operating conditions, based on the ArcelorMittal Steelton No.3 reheating furnace, are computed. The numerical results are used to optimize the operating parameters and thus help to improve the steel quality.


Sign in / Sign up

Export Citation Format

Share Document