A Progressive Damage Modelling of Glass/Epoxy Cylindrical Structure Subjected to Low-Velocity Impact

Author(s):  
Mahrez Ait Mohammed ◽  
Mostapha Tarfaoui
Author(s):  
Junjie Zhou ◽  
Shengnan Wang

In this paper, a progressive damage model for studying the dynamic mechanical response and damage development of composite laminates under low-velocity impact was established. The model applied the Hashin and Hou failure criteria to predict the initiation of intra-laminar damage (fiber and matrix damage); a linear degradation scheme combined with the equivalent displacement method was adopted to simulate the damage development; a cohesive zone model with the bilinear traction-separation relationship was used to predict delamination. A user material subroutine VUMAT was coded, and the simulation analysis of carbon fiber reinforcement composite laminates subjected to 25 J impact was performed via commercial software ABAQUS. The predicted impact force-time curve, impact force-displacement curve, and damage distribution contours among the layers were in a good agreement with the experimental, which verified the proposed model. According to the simulation results, the fiber damage and matrix damage were analyzed, and the expansion of delamination was discussed.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012073
Author(s):  
Xueyao Hu ◽  
Jiaojiao Tang ◽  
Wei Xiao ◽  
Kepeng Qu

Abstract A progressive damage model was presented for carbon fiber woven composites under low velocity impact, considering the strain rate sensitivity of both mechanical properties and failure mechanisms. In this model, strain rate dependency of elastic modulus and nominal strength along in-plane direction are considered. Based on the Weibull distribution, stiffness progressive degradation is conducted by introducing strain rate dependent damage variables for distinct damage modes. With the model implemented in ABAQUS/Explicit via user-defined material subroutine (VUMAT), the mechanical behavior and possible damage modes of composites along in-plane direction can be determined. Furthermore, a bilinear traction separation model and a quadratic stress criterion are applied to predict the initiation and evolution of interlaminar delamination. Comparisons are made between the experimental results and numerical simulations. It is shown that the mechanical response and damage characteristics under low velocity impact, such as contact force history and delamination, are more consistent with the experimental results when taken the strain rate effect into consideration.


2010 ◽  
Vol 118-120 ◽  
pp. 241-245 ◽  
Author(s):  
Liu Ding Chen ◽  
Xiao Yan Tong ◽  
Xiang Zheng ◽  
Lei Jiang Yao

Based on progressive damage theory, a 3D laminated model with an orthotropic property in plane was established to simulate the response of plain weave carbon fiber reinforced silicon carbide(C/SiC) ceramic matrix composites(CMC) under low velocity impact(LVI). Intra-layer damage and inter-layer damage were taken into account, respectively. Three scalar damage variables, associated with the degradation of warp modulus, weft modulus and shear modulus, respectively, were proposed to characterize intra-layer damage evolutions. The intra-layer constitutive model was implemented into MSC.Dytran, via its user subroutine EXFAIL1. The potential delamination region was considered as a discrete cohesive zone. Three vector spring elements were placed into every two adjacent nodes to simulate the inter-layer joints. A scalar damage variables, associated with the degradation of the three vector spring elements, were brought forward to characterize the inter-layer damage evolutions. The inter-layer constitutive model was implemented into MSC.Dytran, via its user subroutine EXELAS. Damage area, indentation depth of C/SiC composite plates and time history of impact force were obtained to compare with experimental results. The numerical results show overall good agreement with experimental results.


Author(s):  
Shivdayal Patel ◽  
Suhail Ahmad

The low velocity impact on composites has been studied as it leads to serious damage. The damage initiates as an intra ply matrix crack due to shear or bending which propagates further into the interface causing de-lamination between dissimilar plies and fiber breakage. This damage evolves with time and adversely affects the mechanical properties and strength of the composite. Since, multiple cracks in the ply are difficult to track, a progressive damage mechanics approach is used to model this failure. The inter ply failure is modeled using cohesive surfaces between the plies. The low velocity impact on composite plate is studied using finite element method. Impact parameters like velocity of impactor, the mass of the impactor and elastic properties of the material etc. are considered. An explicit central difference integration scheme is used to solve for displacements and impact forces. Progressive damage and failure in composites is modeled; an efficient algorithm has been developed and implemented in the FE code ABAQUS through a user-defined subroutine (VUMAT). Reduced integration yields satisfactory results for the impactor velocity less than or equal to 3 m/s for larger mass impact. However, full integration is recommended to obtain the satisfactory results for the (impactor velocity beyond 3 m/s), high velocity impact involving small masses. For the low velocity impact, the peak contact force and displacement are linear functions of impactor velocity for a constant mass. However, a nonlinear behavior is observed for the variation of mass with a constant striking velocity.


Sign in / Sign up

Export Citation Format

Share Document