Analytical solutions for crack-tip sectors in perfectly plastic Mises materials under mixed in-plane and out-of-plane shear loading conditions

2006 ◽  
Vol 73 (13) ◽  
pp. 1797-1813 ◽  
Author(s):  
J. Pan ◽  
P.-C. Lin

2006 ◽  
Vol 129 (4) ◽  
pp. 664-669
Author(s):  
J. Pan ◽  
P.-C. Lin

In this paper, governing equations and solutions for asymptotic singular and nonsingular crack-tip sectors in perfectly plastic materials are first summarized under combined in-plane and out-of-plane shear loading conditions. The crack-tip fields under mixed mode II/III loading conditions are then investigated. An assembly of crack-tip sectors is adopted with stress discontinuities along the border of the two constant stress sectors. The solutions of the crack-tip fields under pure mode II, mixed mode II/III, and nearly pure mode III loading conditions are presented. The trends of the angular variations of the mixed mode II/III crack-tip stresses agree with those of the available computational analysis and the asymptotic analysis for low strain hardening materials. The pure mode II crack-tip stresses are similar to those of Hutchinson, and the nearly pure mode III stresses are similar to those of the pure mode III crack-tip field of Rice.



Author(s):  
J. Pan

In this paper, governing equations and solutions for asymptotic singular and non-singular crack-tip sectors in perfectly plastic materials are first summarized under combined in-plane and out-of-plane shear loading conditions. The crack-tip fields under mixed mode II/III loading conditions are then investigated. An assembly of crack-tip sectors is adopted with stress discontinuities along the border of the two constant stress sectors. The solutions of the crack-tip fields under pure mode II, mixed mode II/III, and nearly pure mode III loading conditions are presented. The trends of the angular variations of the mixed mode II/III crack-tip stresses agree with those of the available computational analysis and the asymptotic analysis for low strain hardening materials. The pure mode II crack-tip stresses are similar to those of Hutchinson and the nearly pure mode III stresses are similar to those of the pure mode III crack-tip field of Rice.



Author(s):  
J. Pan

In this paper, governing equations and solutions for asymptotic singular and non-singular crack-tip sectors in perfectly plastic Mises materials are first reviewed under combined in-plane and out-of-plane shear loading conditions. The crack-tip fields under mixed mode I/III loading conditions are then investigated. One assembly of four crack-tip plastic sectors is adopted with stress discontinuities along the border of two constant stress sectors. The solutions of the crack-tip fields under pure mode I and mixed mode I/III loading conditions are presented. The crack-tip fields under pure mode I and mixed mode I/III loading conditions give fully-plastic solutions with various hydrostatic tensile stresses ahead of the crack tip. The characteristics of the mode I limits of fully plastic crack-tip fields with different hydrostatic tensile stresses ahead of the crack tip agree well the past computational results under pure mode I with different constraint conditions.



2010 ◽  
Vol 452-453 ◽  
pp. 173-176 ◽  
Author(s):  
Qing Fen Li ◽  
Li Zhu ◽  
Friedrich G. Buchholz ◽  
Sheng Yuan Yan

Some results of 3D finite element analyses of the all fracture modes (AFM) specimen on mixed-mode II and III fracture are presented in this paper. The computational fracture analysis is based on the calculation of separated strain energy release rates (SERRs) along the crack front by the modified virtual crack closure integral (MVCCI)-method and the commercially available FE-code ANSYS. Calculation results show that under pure in-plane shear loading (mode II), not only the mode II, but also the mode III loading conditions, are generated owing to the Poission’s ratio effects. Similarly, under pure out-of-plane shear loading (mode III), besides the mode III, the mode II loading conditions are induced due to the global deformation. Nevertheless, once in-plane and out-of-plane shear loadings are superimposed, the fracture behavior appears more complex. Further discussion is given associate with some previous study.



1998 ◽  
Vol 64 (618) ◽  
pp. 438-444 ◽  
Author(s):  
Kenichi HIRASHIMA ◽  
Shigerou NAKANE ◽  
Mutsumi MIYAGAWA ◽  
Shinji KIKUCHI


2017 ◽  
Vol 53 (1) ◽  
pp. 15-25 ◽  
Author(s):  
A.R. Torabi ◽  
Behnam Saboori

Brittle fracture of components made of the general-purpose polystyrene and weakened by an edge U-notch under combined tension/out-of-plane shear loading conditions (mixed mode I/III) has not been studied yet experimentally or theoretically. In this research, a recently developed loading fixture is employed for experimentally investigating the fracture of U-notched general-purpose polystyrene samples with various notch tip radii of 0.5, 1, 2 and 4 mm when they are subjected to different combinations of tension/out-of-plane shear. The samples are fabricated with four different notch tip radii with the purpose of assessing the influence of this geometrical parameter. The experimental values of fracture load and out-of-plane fracture angle are theoretically predicted by the two stress-based criteria of point stress and mean stress lately extended to general loading case of mixed mode I/II/III. It is shown that both the point stress and mean stress criteria provide acceptable predictions to fracture behavior of U-notched general-purpose polystyrene specimens. The critical distances needed for the point stress and mean stress criteria are determined based on the experimental results of the U-notched samples tested under pure mode I loading. No meaningful difference is found between the fracture loads and fracture initiation angles predicted by the point stress and mean stress criteria. It is also observed that as the mode III contribution in the applied mixed mode I/III loading increases, a larger total external load is needed for the fracture of U-notched general-purpose polystyrene specimens to occur.



Author(s):  
F. BERTO ◽  
P. LAZZARIN ◽  
A. KOTOUSOV ◽  
L. P. POOK


2021 ◽  
pp. 002199832110316
Author(s):  
Shinya Matsuda ◽  
Kohei Mabe ◽  
Keiji Ogi ◽  
Shigeki Yashiro ◽  
Yoshifumi Kakudo

In industrial processes, piercing and trimming are essential because composite structures are usually manufactured in a near-net shape to reduce machining operations. Punching and shear cutting using out-of-plane shear loading are expected to increase productivity. Nevertheless, little is known about the effects of such operations on polymer-matrix composites. This study presents on the characterization of piercing damage in typical carbon fiber reinforced plastic (CFRP) cross-ply laminates [0°2/90°2]s after punching using quasi-static (QS) and drop-weight impact (DWI) loadings. During QS punching, the upper and lower ply interfaces delaminate due to the high shear stress to cut fibers and gradual shear deformation in the middle ply; however, during DWI punching at a low impact velocity, delamination of the lower ply interface can be reduced due to the localization of shear deformation, as compared to that in QS punching. Finally, the damage accumulation process during DWI punching is discussed.



Sign in / Sign up

Export Citation Format

Share Document