Mixed Mode I/III Crack-Tip Fields for Perfectly Plastic Mises Materials

Author(s):  
J. Pan

In this paper, governing equations and solutions for asymptotic singular and non-singular crack-tip sectors in perfectly plastic Mises materials are first reviewed under combined in-plane and out-of-plane shear loading conditions. The crack-tip fields under mixed mode I/III loading conditions are then investigated. One assembly of four crack-tip plastic sectors is adopted with stress discontinuities along the border of two constant stress sectors. The solutions of the crack-tip fields under pure mode I and mixed mode I/III loading conditions are presented. The crack-tip fields under pure mode I and mixed mode I/III loading conditions give fully-plastic solutions with various hydrostatic tensile stresses ahead of the crack tip. The characteristics of the mode I limits of fully plastic crack-tip fields with different hydrostatic tensile stresses ahead of the crack tip agree well the past computational results under pure mode I with different constraint conditions.

2006 ◽  
Vol 129 (4) ◽  
pp. 664-669
Author(s):  
J. Pan ◽  
P.-C. Lin

In this paper, governing equations and solutions for asymptotic singular and nonsingular crack-tip sectors in perfectly plastic materials are first summarized under combined in-plane and out-of-plane shear loading conditions. The crack-tip fields under mixed mode II/III loading conditions are then investigated. An assembly of crack-tip sectors is adopted with stress discontinuities along the border of the two constant stress sectors. The solutions of the crack-tip fields under pure mode II, mixed mode II/III, and nearly pure mode III loading conditions are presented. The trends of the angular variations of the mixed mode II/III crack-tip stresses agree with those of the available computational analysis and the asymptotic analysis for low strain hardening materials. The pure mode II crack-tip stresses are similar to those of Hutchinson, and the nearly pure mode III stresses are similar to those of the pure mode III crack-tip field of Rice.


Author(s):  
J. Pan

In this paper, governing equations and solutions for asymptotic singular and non-singular crack-tip sectors in perfectly plastic materials are first summarized under combined in-plane and out-of-plane shear loading conditions. The crack-tip fields under mixed mode II/III loading conditions are then investigated. An assembly of crack-tip sectors is adopted with stress discontinuities along the border of the two constant stress sectors. The solutions of the crack-tip fields under pure mode II, mixed mode II/III, and nearly pure mode III loading conditions are presented. The trends of the angular variations of the mixed mode II/III crack-tip stresses agree with those of the available computational analysis and the asymptotic analysis for low strain hardening materials. The pure mode II crack-tip stresses are similar to those of Hutchinson and the nearly pure mode III stresses are similar to those of the pure mode III crack-tip field of Rice.


1990 ◽  
Vol 57 (3) ◽  
pp. 635-638 ◽  
Author(s):  
P. Dong ◽  
J. Pan

In this paper, we first discuss some of the properties of the crack-tip sectors for perfectly plastic materials under plane-stress conditions. Then starting with the plane-stress mixed-mode crack-tip fields suggested by Shih (1973), we assemble these sectors in a slightly different manner from those in Shih (1973). The missing governing equations needed to completely specify the crack-tip fields for both near mode I and near mode II mixed-mode loadings are derived. The mode I crack-tip field, as the limit of the near mode I cases, differs from Hutchinson’s solution (1968) by the appearance of a small constant stress sector ahead of the crack tip. In addition, the relevance of the solutions of the near mode II cases to some interesting features of the mixed-mode crack-tip fields, as suggested by Budiansky and Rice (1973), is also discussed.


2017 ◽  
Vol 53 (1) ◽  
pp. 15-25 ◽  
Author(s):  
A.R. Torabi ◽  
Behnam Saboori

Brittle fracture of components made of the general-purpose polystyrene and weakened by an edge U-notch under combined tension/out-of-plane shear loading conditions (mixed mode I/III) has not been studied yet experimentally or theoretically. In this research, a recently developed loading fixture is employed for experimentally investigating the fracture of U-notched general-purpose polystyrene samples with various notch tip radii of 0.5, 1, 2 and 4 mm when they are subjected to different combinations of tension/out-of-plane shear. The samples are fabricated with four different notch tip radii with the purpose of assessing the influence of this geometrical parameter. The experimental values of fracture load and out-of-plane fracture angle are theoretically predicted by the two stress-based criteria of point stress and mean stress lately extended to general loading case of mixed mode I/II/III. It is shown that both the point stress and mean stress criteria provide acceptable predictions to fracture behavior of U-notched general-purpose polystyrene specimens. The critical distances needed for the point stress and mean stress criteria are determined based on the experimental results of the U-notched samples tested under pure mode I loading. No meaningful difference is found between the fracture loads and fracture initiation angles predicted by the point stress and mean stress criteria. It is also observed that as the mode III contribution in the applied mixed mode I/III loading increases, a larger total external load is needed for the fracture of U-notched general-purpose polystyrene specimens to occur.


2015 ◽  
Vol 220-221 ◽  
pp. 667-672 ◽  
Author(s):  
Marius Gintalas ◽  
Kaspars Kalniņš ◽  
Algis Pakalnis ◽  
Petras Šadreika ◽  
Antanas Žiliukas

The focus of this work is to investigate pre-cracked plate element fracture under mixed mode I/II loading. In order to look into element with inclined initial crack, the test procedure was also performed due to pure opening fracture (I mode) and in-plane shear mode (II mode). For this purpose, static and dynamic tests were performed with original testing device, in which the specimen was fixed in so called “Arcan disc”. The results showed fracture characteristics dependence under initial crack orientation angle, i.e. due opening mode, in-plane shear mode and mixed mode I/II fracture.


Sign in / Sign up

Export Citation Format

Share Document