A rate dependent cohesive model for the analysis of concrete-FRP bonded interfaces under dynamic loadings

Author(s):  
Massimiliano Bocciarelli
Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1321 ◽  
Author(s):  
Dery Torres ◽  
Shu Guo ◽  
Maria-Pilar Villar ◽  
Daniel Araujo ◽  
Rafael Estevez

Polymer-based composites are becoming widely used for structural applications, in particular in the aeronautic industry. The present investigation focuses on the mechanical integrity of an epoxy resin of which possible damage results in limitation or early stages of dramatic failure. Therefore, a coupled experimental and numerical investigation of failure in an epoxy resin thermoset is carried out that opens the route to an overall micromechanical analysis of thermoset-based composites. In the present case, failure is preceded by noticeable plasticity in the form of shear bands similar to observations in ductile glassy polymers. Thus, an elastic-visco-plastic constitutive law initially devoted to glassy polymer is adopted that captures the rate- dependent yield stress followed by softening and progressive hardening at continued deformation. A general rate-dependent cohesive model is used to describe the failure process. The parameters involved in the description are carefully identified and used in a finite element calculation to predict the material’s toughness for different configurations. Furthermore, the present work allows investigation of nucleation and crack growth in such resins. In particular, a minimum toughness can be derived from the model which is difficult to evaluate experimentally and allows accounting for the notch effect on the onset of failure. This is thought to help in designing polymer-based composites.


2012 ◽  
Vol 525-526 ◽  
pp. 261-264
Author(s):  
Y.Z. Guo ◽  
X. Chen ◽  
Xi Yun Wang ◽  
S.G. Tan ◽  
Z. Zeng ◽  
...  

The mechanical behavior of two composites, i.e., CF3031/QY8911 (CQ, hereafter in this paper) and EW100A/BA9916 (EB, hereafter in this paper), under dynamic loadings were carefully studied by using split Hopkinson pressure bar (SHPB) system. The results show that compressive strength of CQ increases with increasing strain-rates, while for EB the compressive strength at strain-rate 1500/s is lower then that at 800/s or 400/s. More interestingly, most of the stress strain curves of both of the two composites are not monotonous but exhibit double-peak shape. To identify this unusual phenominon, a high speed photographic system is introduced. The deformation as well as fracture characteristics of the composites under dynamic loadings were captured. The photoes indicate that two different failure mechanisms work during dynamic fracture process. The first one is axial splitting between the fiber and the matrix and the second one is overall shear. The interficial strength between the fiber and matrix, which is also strain rate dependent, determines the fracture modes and the shape of the stress/strain curves.


2012 ◽  
Vol 93 ◽  
pp. 48-64 ◽  
Author(s):  
Chi-Hua Yu ◽  
Chang-Wei Huang ◽  
Chuin-Shan Chen ◽  
Yanfei Gao ◽  
Chun-Hway Hsueh

2002 ◽  
Vol 70 (5) ◽  
pp. 685-704 ◽  
Author(s):  
Dhirendra V. Kubair ◽  
Philippe H. Geubelle ◽  
Yonggang Y. Huang

Sign in / Sign up

Export Citation Format

Share Document