Introduction to the special issue on rainfall-triggered landslides and debris flows

2004 ◽  
Vol 73 (3-4) ◽  
pp. 191-192 ◽  
Author(s):  
Giovanni B. Crosta
2011 ◽  
Vol 11 (5) ◽  
pp. 1583-1588 ◽  
Author(s):  
L. Franzi ◽  
D. Giordan ◽  
M. Arattano ◽  
P. Allasia ◽  
M. Arai

Abstract. The papers that are here presented and summarised represent the recent scientific contributions of some authors coming from different countries and working in the fields of monitoring, modelling, mapping and design of mitigation measures against mass movements. The authors had the opportunity to present their recent advancements, discuss each other needs and set forth future research requirements during the 2009 EGU General Assembly, so that their scientific contributions can be considered the result of the debates and exchanges that were set among scientists and researchers, either personally or during the review phase since that date. In this resume, the scientific papers of the special issue are divided according to different thematic areas and summarised. The most innovative scientific approaches proposed in the special issue, regarding the monitoring methodologies, simulation techniques and laboratory equipment are described and summarised. The obtained results are very promising to keep on future research at a very satisfactory level.


2013 ◽  
Vol 33 (4) ◽  
pp. 1 ◽  
Author(s):  
Xingmin MENG ◽  
Guan CHEN ◽  
Peng GUO ◽  
Muqi XIONG ◽  
Wasowski Janusz

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Haruka Tsunetaka ◽  
Slim Mtibaa ◽  
Shiho Asano ◽  
Takashi Okamoto ◽  
Ushio Kurokawa

AbstractAs wood pieces supplied by landslides and debris flows are one of the main components of ecological and geomorphic systems, the importance of quantifying the dimensions of the wood pieces is evident. However, the low accessibility of disturbed channels after debris flows generally impedes accurate and quick wood-piece investigations. Thus, remote-sensing measurements for wood pieces are necessitated. Focusing on sub-watersheds in coniferous and broadleaf forests in Japan (the CF and BF sites, respectively), we measured the lengths of wood pieces supplied by landslides (> 0.2 m length and > 0.03 m diameter) from orthophotos acquired using a small unmanned aerial vehicle (UAV). The measurement accuracy was analyzed by comparing the lengths derived from the UAV method with direct measurements. The landslides at the CF and BF sites were triggered by extremely heavy rainfalls in 2017 and 2018, respectively. UAV flights were operated during February and September 2019 at the CF site and during November 2018 and December 2019 at the BF site. Direct measurements of wood pieces were carried out on the date of the respective second flight date in each site. When both ends of a wood piece are satisfactorily extracted from an orthophoto acquired by the UAV, the wood-piece lengths at the CF site can be measured with an accuracy of approximately ±0.5 m. At the BF site, most of the extracted lengths were shorter than the directly measured lengths, probably because the complex structures of the root wad and tree crown reduced the visibility. Most wood pieces were discharged from landslide scars at the BF site, but at the CF site, approximately 750 wood pieces remained in the landslide scars approximately 19 months after the landslide occurrence. The number of wood pieces in the landslide scars of the CF site increased with increasing landslide area, suggesting that some wood pieces can be left even if large landslides occur. The lengths and locations of the entrapped wood pieces at both sites were not significantly changed between the two UAV flight dates. However, during this period, the rainfall intensities around the CF site measured by the closest rain-gauge of the Japan Meteorological Agency reached their second highest values from 1976 to 2019, which exceeded the 30-year return period. This suggests that most of the entrapped wood pieces rarely migrated even under intense rainfall.


2021 ◽  
Vol 10 (5) ◽  
pp. 315
Author(s):  
Hilal Ahmad ◽  
Chen Ningsheng ◽  
Mahfuzur Rahman ◽  
Md Monirul Islam ◽  
Hamid Reza Pourghasemi ◽  
...  

The China–Pakistan Economic Corridor (CPEC) project passes through the Karakoram Highway in northern Pakistan, which is one of the most hazardous regions of the world. The most common hazards in this region are landslides and debris flows, which result in loss of life and severe infrastructure damage every year. This study assessed geohazards (landslides and debris flows) and developed susceptibility maps by considering four standalone machine-learning and statistical approaches, namely, Logistic Regression (LR), Shannon Entropy (SE), Weights-of-Evidence (WoE), and Frequency Ratio (FR) models. To this end, geohazard inventories were prepared using remote sensing techniques with field observations and historical hazard datasets. The spatial relationship of thirteen conditioning factors, namely, slope (degree), distance to faults, geology, elevation, distance to rivers, slope aspect, distance to road, annual mean rainfall, normalized difference vegetation index, profile curvature, stream power index, topographic wetness index, and land cover, with hazard distribution was analyzed. The results showed that faults, slope angles, elevation, lithology, land cover, and mean annual rainfall play a key role in controlling the spatial distribution of geohazards in the study area. The final susceptibility maps were validated against ground truth points and by plotting Area Under the Receiver Operating Characteristic (AUROC) curves. According to the AUROC curves, the success rates of the LR, WoE, FR, and SE models were 85.30%, 76.00, 74.60%, and 71.40%, and their prediction rates were 83.10%, 75.00%, 73.50%, and 70.10%, respectively; these values show higher performance of LR over the other three models. Furthermore, 11.19%, 9.24%, 10.18%, 39.14%, and 30.25% of the areas corresponded to classes of very-high, high, moderate, low, and very-low susceptibility, respectively. The developed geohazard susceptibility map can be used by relevant government officials for the smooth implementation of the CPEC project at the regional scale.


2013 ◽  
Vol 13 (3) ◽  
pp. 795-808 ◽  
Author(s):  
N. Sh. Chen ◽  
G. Sh. Hu ◽  
W. Deng ◽  
N. Khanal ◽  
Y. H. Zhu ◽  
...  

Abstract. The Kosi River is an important tributary of the Ganges River, which passes through China, Nepal and India. With a basin area of 71 500 km2, the Kosi River has the largest elevation drop in the world (from 8848 m of Mt Everest to 60 m of the Ganges Plain) and covers a broad spectrum of climate, soil, vegetation and socioeconomic zones. The basin suffers from multiple water related hazards including glacial lake outburst, debris flow, landslides, flooding, drought, soil erosion and sedimentation. This paper describes the characteristics of water hazards in the basin, based on the literature review and site investigation covering hydrology, meteorology, geology, geomorphology and socio-economics. Glacial lake outbursts are a huge threat to the local population in the region and they usually further trigger landslides and debris flows. Floods are usually a result of interaction between man-made hydraulic structures and the natural environment. Debris flows are widespread and occur in clusters. Droughts tend to last over long periods and affect vast areas. Rapid population increase, the decline of ecosystems and climate change could further exacerbate various hazards in the region. The paper has proposed a set of mitigating strategies and measures. It is an arduous challenge to implement them in practice. More investigations are needed to fill in the knowledge gaps.


2021 ◽  
Vol 27 (1) ◽  
pp. 1-2
Author(s):  
Paul M. Santi ◽  
Lauren N. Schaefer
Keyword(s):  

2021 ◽  
Vol 27 (2) ◽  
pp. 151-151
Author(s):  
Paul M. Santi ◽  
Lauren N. Schaefer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document