Effects of flux boundary conditions on pore-water pressure distribution in slope

2013 ◽  
Vol 165 ◽  
pp. 133-142 ◽  
Author(s):  
Harianto Rahardjo ◽  
Alfrendo Satyanaga ◽  
Eng-Choon Leong
2018 ◽  
Vol 54 (3) ◽  
pp. 193-202
Author(s):  
Peng Zhao ◽  
Feier Chen ◽  
Guoliang Yu

Abstract This paper investigates the responses of cohesive sediment to mechanical vibration by experimental observation, containing: (1) the dynamic soil pressure, dynamic pore water pressure and dynamic acceleration to the vibration source; (2) the soil pressure distribution in the near field centered in an artificial columnar vibration source. Under the mechanical vibration with a frequency of 200 Hz and an amplitude of 1.15 mm, the dynamic soil pressure, dynamic pore water pressure and dynamic acceleration of underwater viscous sediment were measured in the sediment of four different depositing conditions. Results of the dynamic soil pressure, dynamic pore water pressure and dynamic acceleration of underwater viscous sediment in the near field responding to artificial vibration source are exhibited and discussed. It is found that, excited by the sinusoidal vibrator, the soil pressure presents a response of statistical sinusoidal fluctuation with the same frequency to the vibration source. In the sediment of lower initial yield stresses, the soil pressure distribution distinctly tends to firstly increase and then decrease with distance. The amplitude of the soil pressure is attenuated exponentially with distance.


2016 ◽  
Vol 116 (2) ◽  
pp. 435-451 ◽  
Author(s):  
Xiaoliang Yao ◽  
Jilin Qi ◽  
Mengxin Liu ◽  
Fan Yu

2019 ◽  
Vol 8 (2) ◽  
pp. 41-47
Author(s):  
Tomohide Takeyama ◽  
Kazuya Honda ◽  
Atsushi Iizuka

 In the wide area of the eastern part of Tokyo, the ground level is less than mean sea level. This area is more vulnerable to disasters than other areas. If large flood damage such as storm surge should occur in this area, the disaster would be a long-term catastrophe. On the coast of Tokyo Bay, countermeasures have been taken by tide embankments and floodgates. However, considering the damage scale when it occurs, an analysis in this area is very important. In this area, ground settlement occurred and groundwater head dropped because groundwater excessively withdrew by the industrial purpose during the period of economic growth. Currently, the groundwater head recovers and the ground settlement has been subsided. However, due to the groundwater head fluctuation, pore water pressure distribution had been different from hydrostatic pressure distribution. Therefore, in the analysis in this area, it is necessary to consider past groundwater head fluctuation. In this research, the ground settlement and the distribution of pore water pressure are simulated from groundwater level fluctuation over the past 100 years. Then, we conducted the seismic analysis by input the distribution of effective stress calculating from the simulated ground water pressure. The sites analyzed in this research are Tokyo Sea Life Park at the mouth of Arakawa River.


2020 ◽  
Author(s):  
Marc Hugentobler ◽  
Simon Loew ◽  
Clément Roques

<p>Rock slope instabilities normally form through long-term strength degradation of initially stable slopes. The rate of progressive damage accumulation in the rock slope is expected to vary over time depending on the current environmental conditions. It is often assumed that glacial retreat, with its increased dynamics in the thermal and hydraulic boundary conditions in combination with mechanical ice unloading induce stresses that cause increased rock mass damage in adjacent slopes. However, direct field measurements to understand these dynamics and to quantify damage are rare.</p><p>In this contribution we present new data of a continuous borehole monitoring system installed in a stable rock slope beside the retreating glacier tongue of the Great Aletsch Glacier (Swiss Alps). Special focus lies on the pore water pressure evolution in order to better understand the origin of the presumably hydro-mechanically forced deformation measured in the study area. We compare data of two borehole pressure sensors installed at 50 m depth in the fractured crystalline rock, pressure fluctuations measured in a sink hole on the glacier close to our study site, and glacial melt water discharge measurements. These data show that the pore pressure variability in the slope is driven by annual snowmelt infiltration cycles, rainfall events, and the connection to the englacial water of the temperate valley glacier. We show that our in-situ measurements provide critical data to improve the understanding of the effects of a retreating valley glacier on the boundary conditions and eventually the stability of an adjacent rock slope.</p>


Sign in / Sign up

Export Citation Format

Share Document