stratified rock
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 22)

H-INDEX

10
(FIVE YEARS 2)

Author(s):  
Linyi Li ◽  
Junsheng Yang ◽  
Jian Wu ◽  
Shuying Wang ◽  
Xinghua Fang ◽  
...  

Author(s):  
Jorge Ronny Espin ◽  
Sebastián Araujo

Roads are generally affected by slope failures, and these failures can increase when there are weathered materials and high rainfall. These circumstances occur in the sub-Andean zone of Ecuador. This is the region where the study area is located. The stability of a stratified rock slope, which is affecting a section of highway E45, was evaluated. The study slope is exposed to the road, but the upper part is covered by a soil-type material and dense vegetation that makes it challenging to study. We applied the Q-slope method and seismic tomography; these methods used together worked well, because they allowed to correlate and infer information about the quality of the rock mass, even in a fast and economical way. We also performed core drilling with core recovery in the crown of the slope and SPT test. The slope presented two well-differentiated zones; therefore, Q-slope values were calculated for each of these zones. The results show that the slope is unstable. The application of seismic tomography as an input parameter for calculating Q-slope was important because it allowed evaluating the stability where it is impossible to collect geomechanical information, correlate information taken at the foot of the slope, and define the depth of the bedrock.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qi Shen ◽  
Zhifang Zhou ◽  
Meng Chen ◽  
Zhe Wang ◽  
Yabing Li

The interlayer shear weakness zone (ISWZ) is a special structural plane with different widths and spacing in stratified rock masses, it has higher permeability compared with surrounding rocks which is a risk factor for the safety of the hydropower station project. The high-pressure packer test (HPPT) by step injection is always applied to characterize the permeability of ISWZ. However, the non-Darcian flow is easy to appear under high pressure, which makes the Darcy law model no longer applicable. In this study, two non-Darcian flow analytical methods for confined aquifer were proposed to investigate the non-Darcian flow permeability parameters. The equivalent permeability coefficients of different non-Darcian models were derived as well. The in situ tests were conducted on the ISWZs at the Baihetan hydropower station to verify the proposed methods. The results indicate that the flow is non-Darcian flow in the test section from integrity to destruction during the whole HPPT process. Izbash’s law has a better fit than Forchheimer’s law in this complicated test situation. The equivalent permeability coefficients after destruction are one or two orders of magnitude larger than those before. Meanwhile, it is necessary to pay attention to the increased difference of two expressions of the equivalent permeability coefficients under higher gradient (i) or velocity (v). In general, these methods can be used to evaluate the characteristic of ISWZ to analyze the impact on engineering stability.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-29
Author(s):  
Yiran Yang ◽  
Yanzhong Li ◽  
Jiaojiao Pan ◽  
Tao Luo ◽  
Zidong Lu

The hazards induced by stratified rock mass creep are still one of the major problems that threaten the safety of underground engineering. This paper takes safe construction of underground roadway in Urumqi mining area as the research background. In this study, we mainly adopted rock mechanics experiments to accomplish the research on creep behavior and crack evolution of stratified structural sandstone. Creep deformation characteristics of stratified structural sandstone under different load were revealed; also, we analyzed the reason why a part of rock samples failed but others were not under the same load. Creep behavior and crack evolution of rock samples without stratified structure have significant randomness. The crack evolution and failure characteristics of stratified structural rock samples were mainly manifested as failure along and cutting through structural plane and their combined forms. Creep strain, creep duration, and creep rate of rock samples with stratified structure had a nonlinear relationship with applied load, such as exponential function or logarithmic function. Understanding the evolutionary relationship between the above parameters and load provides a basis for obtaining the creep behavior of stratified rock mass under different load conditions.


2021 ◽  
Author(s):  
Sarah Wigginton ◽  
Elizabeth Petrie ◽  
James Evans

We examine the mechanics of thrust fault initiation and development in sedimentary rocks which accounts for vertical variation in mechanical strength of the rocks. We use numerical mechanical models of mechanically layered rocks to examine thrust ramp nucleation in competent units, and fault propagation upward and downward into weaker units forming folds at both fault tips. We investigate the effects of mechanical stratigraphy on stress heterogeneity, rupture direction, fold formation, and fault geometry motivated by the geometry of the Ketobe Knob thrust fault in central Utah. The study incorporates finite element models to examine how mechanical stratigraphy, loading conditions, and fault configurations determine temporal and spatial variation in stress and strain. We model the predicted deformation and stress distributions in four model domains: (1) an intact, mechanically stratified rock sequence, (2) a mechanically stratified section with a range of interlayer frictional strengths, and two faulted models, (3) one with a stress boundary condition, and (4) one with a displacement boundary condition. The models show that a dramatic increase in stress develops in the competent rock layers whereas the stresses are lower in the weaker rocks. The frictional models reveal that the heterogeneous stress variations increase contact frictional strength. Faulted models contain a 20° dipping fault in the most competent unit. The models show an increase in stress in areas above and below fault tips, with extremely high stresses predicted in a ‘back thrust’ location at the lower fault tip. These findings support the hypothesis that thrust faults and associated folds at the Ketobe Knob developed in accordance with the ramp-first kinematic model and development of structures was significantly influenced by the nature of the mechanical stratigraphy.


2021 ◽  
Vol 3 (1(59)) ◽  
pp. 19-22
Author(s):  
Anton Korol

The object of research is the processes of controlling the state of side rocks to prevent the collapse of the stratified rock strata in the coal-rock massif containing the workings. The studies carried out made it possible to establish the influence of the rigidity of the guard structures of mine workings on the stability of side rocks in the coal-rock massif. It is proved that as a result of the action of an external compressive load on the supporting lateral rocks, the structure, in the form of a model of bunches made of wooden posts, increases its rigidity until the destruction of the security structure. After that, there is an increase in the convergence of side rocks and their destruction. The change in the stiffness of the crushed rock in the filling massif model, which is used to support the lateral rocks, occurs as a result of the compaction of the original material. This is due to repackaging of crushed rock fractions of different sizes and its additional grinding. As a result of this interaction of the side rocks with the filling massif, the integrity of the roof and soil is ensured and convergence is limited. To assess the stability of side rocks, it is proposed to use a dimensionless stress concentration factor k. This coefficient takes into account the rigidity of the guard structures of the mine workings and the flexural rigidity of the side rocks. It was found that when the values of the coefficient k are close to zero (k→0), there is a loss of stability of the guard structures of mine workings and the destruction of side rocks in the coal-rock massif. The preservation of the integrity of the side rocks and the stability of security structures is ensured at values of k>0.1, which corresponds to the parameters of the pliable supporting structures. Most favorably on the condition of side rocks in the coal-rock massif is influenced by the method of backing up the mined-out space of crushed rock. The use of this method excludes the collapse of side rocks. When solving the problem of stability of mine workings at the stage of making technical decisions, it is necessary to predetermine the issues of rigidity of security structures with deformation characteristics of side rocks.


2021 ◽  
Vol 2 (4) ◽  
pp. 190-197
Author(s):  
Evgeny N. Sher

In hydraulic fracturing commonly used in mining, it is important to determine the shapes and sizes of created fractures. The governing factor in this case is the structure of rock mass which is often stratified. This study analyzes the influence of strengths of the layers and their stress states on the shapes of the growing fractures. Numerical modeling shows that in hydraulic fracturing with low-viscous fluids, fractures grow mostly in a layer having lower tension or compression strengths. The calculations carried out for the analyzed cases provide the values of tension strength and external compression for hydraulic fractures to grow only in one layer. It is shown that the increase in the breakdown fluid viscosity weakens this effect.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1285
Author(s):  
Haifeng Lu ◽  
Yuan Zhang ◽  
Guifang Zhang ◽  
Manman Zhang

On the basis of the one-dimensional heat conduction–convection equation, a thermal effect model for vertical groundwater migration in the stratified rock mass was established, the equations for temperature distribution in layered strata were deduced, and the impacts of the vertical seepage velocity of groundwater and the thermal conductivity of surrounding rocks on the temperature field distribution in layered strata were analyzed. The proposed model was employed to identify the thermal convection and conduction regions at two temperature-measuring boreholes in coal mines, and the vertical migration velocity of groundwater was obtained through reverse calculation. The results show that the vertical temperature distribution of the layered rock mass is subject to the migration of the geothermal water; the temperature curve of the layered formation is convex when the geothermal water travels upward, but concave when the water moves downward. The temperature distribution in the stratified rock mass is also subject to the thermal conductivity of the rock mass; greater thermal conductivity of the rock mass leads to a larger temperature difference among regions of the rock mass, while weaker thermal conductivity results in a smaller temperature difference. A greater velocity of the vertical migration of geothermal water within the surrounding rock leads to a larger curvature of the temperature curve. The model was applied to a study case, which showed that the model could appropriately describe the variation pattern of the ground temperature in the stratified rock mass, and a comparison between the modeling result and the measured ground temperature distribution revealed a high goodness of fit of the model with the actual situation.


Sign in / Sign up

Export Citation Format

Share Document