A genetic algorithm encoding for cardinality constraints and automatic variable linking in structural optimization

2008 ◽  
Vol 30 (12) ◽  
pp. 3708-3723 ◽  
Author(s):  
Helio J.C. Barbosa ◽  
Afonso C.C. Lemonge ◽  
Carlos C.H. Borges
2014 ◽  
Vol 496-500 ◽  
pp. 429-435
Author(s):  
Xiao Ping Zhong ◽  
Peng Jin

Firstly, a two-level optimization procedure for composite structure is investigated with lamination parameters as design variables and MSC.Nastran as analysis tool. The details using lamination parameters as MSC.Nastran input parameters are presented. Secondly, with a proper equivalent stiffness laminate built to substitute for the lamination parameters, a two-level optimization method based on the equivalent stiffness laminate is proposed. Compared with the lamination parameters-based method, the layer thicknesses of the equivalent stiffness laminate are adopted as continuous design variables at the first level. The corresponding lamination parameters are calculated from the optimal layer thicknesses. At the second level, genetic algorithm (GA) is applied to identify an optimal laminate configuration to target the lamination parameters obtained. The numerical example shows that the proposed method without considering constraints of lamination parameters can obtain better optimal results.


Author(s):  
Ali Kaveh ◽  
S.R. Hoseini Vaez ◽  
Pedram Hosseini

In this study, the Modified Dolphin Monitoring (MDM) operator is used to enhance the performance of some metaheuristic algorithms. The MDM is a recently presented operator that controls the population dispersion in each iteration. Algorithms are selected from some well-established algorithms. Here, this operator is applied on Differential Evolution (DE), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Vibrating Particles System (VPS), Enhanced Vibrating Particles System (EVPS), Colliding Bodied Optimization (CBO) and Harmony Search (HS) and the performance of these algorithms are evaluated with and without this operator on three well-known structural optimization problems. The results show the performance of this operator on these algorithms for the best, the worst, average and average weight of the first quarter of answers.


2004 ◽  
Vol 35 (5) ◽  
pp. 32-43 ◽  
Author(s):  
Tetsuyuki Takahama ◽  
Setsuko Sakai ◽  
Takumi Ichimura ◽  
Yoshinori Isomichi

Author(s):  
S.K. MISHRA ◽  
G. PANDA ◽  
S. MEHER ◽  
R. MAJHI

The problem of portfolio selection is a very challenging problem in computational finance and has received a lot of attention in last few decades. Selecting an asset and optimal weighting of it from a set of available assets is a critical issue for which the decision maker takes several aspects into consideration. Different constraints like cardinality constraints, minimum buy in thresholds and maximum limit constraint are associated with assets selection. Financial returns associated are often strongly non-Gaussian in character, and exhibit multivariate outliers. Taking these constraints into consideration and with the presence of these outliers we consider a multi-objective problem where the percentage of each available asset is so selected that the total profit of the portfolio is maximized while total risk is minimized. Nondominated Sorting Genetic Algorithm-II is used for solving this multiobjective portfolio selection problem. Performance of the proposed algorithm is carried out by performing different numerical experiments using real-world data.


Sign in / Sign up

Export Citation Format

Share Document