Structural optimization by genetic algorithm with degeneration (GAd)

2004 ◽  
Vol 35 (5) ◽  
pp. 32-43 ◽  
Author(s):  
Tetsuyuki Takahama ◽  
Setsuko Sakai ◽  
Takumi Ichimura ◽  
Yoshinori Isomichi
2014 ◽  
Vol 496-500 ◽  
pp. 429-435
Author(s):  
Xiao Ping Zhong ◽  
Peng Jin

Firstly, a two-level optimization procedure for composite structure is investigated with lamination parameters as design variables and MSC.Nastran as analysis tool. The details using lamination parameters as MSC.Nastran input parameters are presented. Secondly, with a proper equivalent stiffness laminate built to substitute for the lamination parameters, a two-level optimization method based on the equivalent stiffness laminate is proposed. Compared with the lamination parameters-based method, the layer thicknesses of the equivalent stiffness laminate are adopted as continuous design variables at the first level. The corresponding lamination parameters are calculated from the optimal layer thicknesses. At the second level, genetic algorithm (GA) is applied to identify an optimal laminate configuration to target the lamination parameters obtained. The numerical example shows that the proposed method without considering constraints of lamination parameters can obtain better optimal results.


Author(s):  
Ali Kaveh ◽  
S.R. Hoseini Vaez ◽  
Pedram Hosseini

In this study, the Modified Dolphin Monitoring (MDM) operator is used to enhance the performance of some metaheuristic algorithms. The MDM is a recently presented operator that controls the population dispersion in each iteration. Algorithms are selected from some well-established algorithms. Here, this operator is applied on Differential Evolution (DE), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Vibrating Particles System (VPS), Enhanced Vibrating Particles System (EVPS), Colliding Bodied Optimization (CBO) and Harmony Search (HS) and the performance of these algorithms are evaluated with and without this operator on three well-known structural optimization problems. The results show the performance of this operator on these algorithms for the best, the worst, average and average weight of the first quarter of answers.


2008 ◽  
Vol 30 (12) ◽  
pp. 3708-3723 ◽  
Author(s):  
Helio J.C. Barbosa ◽  
Afonso C.C. Lemonge ◽  
Carlos C.H. Borges

2007 ◽  
Vol 348-349 ◽  
pp. 725-728 ◽  
Author(s):  
Omer Soykasap ◽  
Şükrü Karakaya

In this study, the structural optimization of laminated composite plates for maximum buckling load capacity is performed by using genetic algorithm. The composite plate under consideration is a 64-ply laminate made of graphite/epoxy, is simply supported on four sides, and subject to in-plane compressive static loads. The critical buckling loads are determined for several load cases and different plate aspect ratios using 2-ply stacks of 02, ±45, 902. The problem has multiple global solutions, the results of which are compared with previously published results.


Sign in / Sign up

Export Citation Format

Share Document