Experimental accuracy of two dimensional strain measurements using Digital Image Correlation

2013 ◽  
Vol 46 ◽  
pp. 718-726 ◽  
Author(s):  
Neil A. Hoult ◽  
W. Andy Take ◽  
Chris Lee ◽  
Michael Dutton
Author(s):  
R. S. Hansen ◽  
D. W. Waldram ◽  
T. Q. Thai ◽  
R. B. Berke

Abstract Background High-resolution Digital Image Correlation (DIC) measurements have previously been produced by stitching of neighboring images, which often requires short working distances. Separately, the image processing community has developed super resolution (SR) imaging techniques, which improve resolution by combining multiple overlapping images. Objective This work investigates the novel pairing of super resolution with digital image correlation, as an alternative method to produce high-resolution full-field strain measurements. Methods First, an image reconstruction test is performed, comparing the ability of three previously published SR algorithms to replicate a high-resolution image. Second, an applied translation is compared against DIC measurement using both low- and super-resolution images. Third, a ring sample is mechanically deformed and DIC strain measurements from low- and super-resolution images are compared. Results SR measurements show improvements compared to low-resolution images, although they do not perfectly replicate the high-resolution image. SR-DIC demonstrates reduced error and improved confidence in measuring rigid body translation when compared to low resolution alternatives, and it also shows improvement in spatial resolution for strain measurements of ring deformation. Conclusions Super resolution imaging can be effectively paired with Digital Image Correlation, offering improved spatial resolution, reduced error, and increased measurement confidence.


2016 ◽  
Vol 23 (3) ◽  
pp. 461-480 ◽  
Author(s):  
Sze-Wei Khoo ◽  
Saravanan Karuppanan ◽  
Ching-Seong Tan

Abstract Among the full-field optical measurement methods, the Digital Image Correlation (DIC) is one of the techniques which has been given particular attention. Technically, the DIC technique refers to a non-contact strain measurement method that mathematically compares the grey intensity changes of the images captured at two different states: before and after deformation. The measurement can be performed by numerically calculating the displacement of speckles which are deposited on the top of object’s surface. In this paper, the Two-Dimensional Digital Image Correlation (2D-DIC) is presented and its fundamental concepts are discussed. Next, the development of the 2D-DIC algorithms in the past 33 years is reviewed systematically. The improvement of 2DDIC algorithms is presented with respect to two distinct aspects: their computation efficiency and measurement accuracy. Furthermore, analysis of the 2D-DIC accuracy is included, followed by a review of the DIC applications for two-dimensional measurements.


2021 ◽  
pp. 2150032
Author(s):  
A. Deepak ◽  
D. F. L. Jenkins

Digital Image Correlation (DIC) techniques can be used to visually map and measure strain in materials such as metals and metallic alloys. The strain induced in an American Society for Testing and Materials (ASTMs) standard specimen can be measured using a DIC technique. Image patterns indicating the localized strain variations as a function of time for the constant load applied were also obtained. Results obtained using the DIC technique were more accurate compared to conventional strain sensors. DIC results were also compared with nanomaterial-based strain sensor output. Localized strain induced in the material can be visualized and quantified analytically using DIC.


2016 ◽  
Vol 140 ◽  
pp. 192-201 ◽  
Author(s):  
Mahoor Mehdikhani ◽  
Mohammadali Aravand ◽  
Baris Sabuncuoglu ◽  
Michaël G. Callens ◽  
Stepan V. Lomov ◽  
...  

2013 ◽  
Vol 586 ◽  
pp. 96-99
Author(s):  
Tomasz Brynk ◽  
Anatolii Laptiev ◽  
Oleksandr Tolochyn ◽  
Zbigniew Pakiela

Modern materials fabrication methods which utilize severe plastic deformation (SPD) do not often allow to obtain enough volume of material to prepare standardized samples for mechanical tests. Therefore, there is a need for mini-samples testing. Mini-samples tests require special approach in terms of precise strain measurements. Accurate strain measurements may be achieved by means of non-contact optical method, namely Digital Image Correlation (DIC). The aim of this work is to present the methodology and results of mini-samples tests in which displacement fields measurements performed by means of DIC and inverse method were utilized for calculation of stress intensity factors and crack tip position tracking. The influence of the subarea of optical measurements for which calculation were performed on the calculations results has been investigated during tests in SPD processed Al alloys and brittle WC-Co sinters produced by means of impact sintering method.


Sign in / Sign up

Export Citation Format

Share Document