scholarly journals A Review of Surface Deformation and Strain Measurement Using Two-Dimensional Digital Image Correlation

2016 ◽  
Vol 23 (3) ◽  
pp. 461-480 ◽  
Author(s):  
Sze-Wei Khoo ◽  
Saravanan Karuppanan ◽  
Ching-Seong Tan

Abstract Among the full-field optical measurement methods, the Digital Image Correlation (DIC) is one of the techniques which has been given particular attention. Technically, the DIC technique refers to a non-contact strain measurement method that mathematically compares the grey intensity changes of the images captured at two different states: before and after deformation. The measurement can be performed by numerically calculating the displacement of speckles which are deposited on the top of object’s surface. In this paper, the Two-Dimensional Digital Image Correlation (2D-DIC) is presented and its fundamental concepts are discussed. Next, the development of the 2D-DIC algorithms in the past 33 years is reviewed systematically. The improvement of 2DDIC algorithms is presented with respect to two distinct aspects: their computation efficiency and measurement accuracy. Furthermore, analysis of the 2D-DIC accuracy is included, followed by a review of the DIC applications for two-dimensional measurements.

2019 ◽  
Vol 39 (12) ◽  
pp. 1212002
Author(s):  
朱飞鹏 Zhu Feipeng ◽  
陆润之 Lu Runzhi ◽  
白鹏翔 Bai Pengxiang ◽  
雷冬 Lei Dong

Author(s):  
Tzu-Yu Kuo ◽  
Wei-Chung Wang ◽  
Chun-I Chu ◽  
Jia-He Chen ◽  
Te-Heng Hung ◽  
...  

In this study, deformation of cylindrical shells under axial compressive load was studied and characterized by a noncontact detection technique, called digital image correlation (DIC). As opposed to commonly used strain gages for measuring structure strains at specific points, the DIC method can render not only 2D but also 3D full-field measurements for strain as well as structure deformation. The accuracy of strain measurement obtained using the DIC method was carefully validated by following ASTM standard E8 for strain measurement using strain gages in tensile tests. The DIC technique provided convenient measurements for characterizing the buckling behaviors of defective cylindrical shell samples. This study has engineering implications for providing 3D strain and deformation analyses to ensure structure reliability and safety.


2007 ◽  
Vol 7-8 ◽  
pp. 265-270 ◽  
Author(s):  
Thorsten Siebert ◽  
Thomas Becker ◽  
Karsten Spiltthof ◽  
Isabell Neumann ◽  
Rene Krupka

The reliability for each measurement technique depends on the knowledge of it’s uncertainty and the sources of errors of the results. Among the different techniques for optical measurement techniques for full field analysis of displacements and strains, digital image correlation (DIC) has been proven to be very flexible, robust and easy to use, covering a wide range of different applications. Nevertheless the measurement results are influenced by statistical and systematical errors. We discuss a 3D digital image correlation system which provides online error information and the propagation of errors through the calculation chain to the resulting contours, displacement and strains. Performance tests for studying the impact of calibration errors on the resulting data are shown for static and dynamic applications.


Sign in / Sign up

Export Citation Format

Share Document