scholarly journals Experimental studies of thin-walled steel roof battens subject to pull-through failures

2016 ◽  
Vol 113 ◽  
pp. 388-406 ◽  
Author(s):  
Mayooran Sivapathasundaram ◽  
Mahen Mahendran
Author(s):  
Zied Sahraoui ◽  
Kamel Mehdi ◽  
Moez Ben-Jaber

The development of the manufacturing-based industries is principally due to the improvement of various machining operations. Experimental studies are important in researches, and their results are also considered useful by the manufacturing industries with their aim to increase quality and productivity. Turning is one of the principal machining processes, and it has been studied since the 20th century in order to prevent machining problems. Chatter or self-excited vibrations represent an important problem and generate the most negative effects on the machined workpiece. To study this cutting process problem, various models were developed to predict stable and unstable cutting conditions. Stability analysis using lobes diagrams became useful to classify stable and unstable conditions. The purpose of this study is to analyze a turning process stability using an analytical model, with three degrees of freedoms, supported and validated with experimental tests results during roughing operations conducted on AU4G1 thin-walled tubular workpieces. The effects of the tubular workpiece thickness, the feed rate and the tool rake angle on the machining process stability will be presented. In addition, the effect of an additional structural damping, mounted inside the tubular workpiece, on the machining process stability will be also studied. It is found that the machining stability process is affected by the tubular workpiece thickness, the feed rate and the tool rake angle. The additional structural damping increases the stability of the machining process and reduces considerably the workpiece vibrations amplitudes. The experimental results highlight that the dynamic behavior of turning process is governed by large radial deformations of the thin-walled workpieces. The influence of this behavior on the stability of the machining process is assumed to be preponderant.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2125 ◽  
Author(s):  
Paweł Dunaj ◽  
Stefan Berczyński ◽  
Karol Miądlicki ◽  
Izabela Irska ◽  
Beata Niesterowicz

The paper presents a new way to conduct passive elimination of vibrations consisting of covering elements of structures with low dynamic stiffness with polylactide (PLA). The PLA cover was created in 3D printing technology. The PLA cover was connected with the structure by means of a press connection. Appropriate arrangement of the PLA cover allows us to significantly increase the dissipation properties of the structure. The paper presents parametric analyses of the influence of the thickness of the cover and its distribution on the increase of the dissipation properties of the structure. Both analyses were carried out using finite element models (FEM). The effectiveness of the proposed method of increasing damping and the accuracy of the developed FEM models was verified by experimental studies. As a result, it has been proven that the developed FEM model of a free-free steel beam covered with polylactide enables the mapping of resonance frequencies at a level not exceeding 0.6% of relative error. Therefore, on its basis, it is possible to determine the parameters of the PLA cover. Comparing a free-free steel beam without cover with its PLA-covered counterpart, a reduction in the amplitude levels of the receptance function was achieved by up to 90%. The solution was validated for a steel frame for which a 37% decrease in the amplitude of the receptance function was obtained.


ce/papers ◽  
2017 ◽  
Vol 1 (2-3) ◽  
pp. 1697-1706
Author(s):  
Myuran Kathekeyan ◽  
Mahen Mahendran ◽  
Mayooran Sivapathasundaram

2016 ◽  
Vol 684 ◽  
pp. 253-262 ◽  
Author(s):  
E.G. Demyanenko ◽  
I.P. Popov

In this article the flanging method of thin-walled ring blanks using the elastic punch and rigid die scheme is investigated. Presence of a cylindrical portion near the larger edge and a flat area at the side of the blank hole is mandatory. Such conditions allow producing conical parts with minimal thickness variation by altering height of the cylindrical portion. Conducted experimental studies showed that the minimal thickness variation values are not exceeding 16% for different materials and relative thicknesses less than 0,01.


Sign in / Sign up

Export Citation Format

Share Document