Numerical insights on the seismic risk of confined masonry towers

2019 ◽  
Vol 180 ◽  
pp. 713-727 ◽  
Author(s):  
Gianni Bartoli ◽  
Michele Betti ◽  
Luciano Galano ◽  
Giacomo Zini
2010 ◽  
Vol 133-134 ◽  
pp. 843-848 ◽  
Author(s):  
Adolfo Preciado Quiroz ◽  
Silvio T. Sperbeck ◽  
Harald Budelmann ◽  
Gianni Bartoli ◽  
Elham Bazrafshan

This work presents the investigation of the efficiency of different prestressing devices as a rehabilitation measure for the seismic risk mitigation of historical masonry towers. As a first phase, the seismic vulnerability of theoretical masonry towers was assessed by means of numerical models validated with information from the literature, observed damage and behavior of these structures due to passed earthquakes (crack pattern and failure mechanisms), and mainly taking into account the engineering experience. Afterwards, the validated models were rehabilitated with different prestressing devices; analyzing the results and concluding which device or the combination of them improved in a better way the seismic performance of the masonry towers. Finally, the methodology will be applied in two historical masonry towers located in seismic areas; the medieval tower “Torre Grossa” of San Gimignano, Italy, and one of the bell towers of the Cathedral of Colima, Mexico.


2021 ◽  
Author(s):  
Christian R Escudero ◽  
Alejandro Ramirez Gaytan ◽  
Araceli Zamora Camacho ◽  
Adolfo Preciado ◽  
Karen L. Flores ◽  
...  

Abstract We performed a seismic vulnerability assessment that involves geotechnical and building structure analysis for Puerto Vallarta, Mexico, a city located along the pacific coast. Like many other Latin American cities, has significant seismic risk. We implemented the multi-channel analysis of surface waves and the horizontal-to-vertical spectral ratio methods to estimate shear wave velocity and soil resonance frequency. We considered standard penetration test to determine the penetration resistance and soil classification. We also defined building typologies based on construction materials and structural systems. The VS30 parameter shows that Puerto Vallarta has the three poorest soil classifications. The resonance frequency parameter shows four zones with different fundamental soil periods. We inferred the building's vulnerability from the coupling between the structural and soil fundamental period and the soil characteristics. The analysis shows several vulnerable buildings scatters within the city, e.g., within the tourist area, confined masonry buildings from one to five stories and moment resistance frame buildings up to 12 in the tourist area, poorly confined masonry houses of one to two stories, and confined masonry buildings of one to five stories in the residential/commercial. We present an approach that combines the academic and government to solve a real and transcendental problem since it might directly affect the regulation and structure evaluations in the area. We are sure that these exercises are of great interest in urban growth areas in other parts of the world, especially in Latin America, to achieve seismic risk mitigation.


2019 ◽  
Vol 18 (3) ◽  
pp. 969-1008 ◽  
Author(s):  
Giacomo Torelli ◽  
Dina D’Ayala ◽  
Michele Betti ◽  
Gianni Bartoli

Abstract The new Italian building code, published in 2018 [MIT in NTC 2018: D.M. del Ministero delle Infrastrutture e dei trasporti del 17/01/2018. Aggiornamento delle Norme Tecniche per le Costruzioni (in Italian), 2018], explicitly refers to the Italian “Guidelines for the assessment and mitigation of the seismic risk of the cultural heritage” [PCM in DPCM 2011: Direttiva del Presidente del Consiglio dei Ministri per valutazione e riduzione del rischio sismico del patrimonio culturale con riferimento alle norme tecniche per le costruzioni, G.U. n. 47 (in Italian), 2011] as a reliable source of guidance that can be employed for the vulnerability assessment of heritage buildings under seismic loads. According to these guidelines, three evaluation levels are introduced to analyse and assess the seismic capacity of historic masonry structures, namely: (1) simplified global static analyses; (2) kinematic analyses based on local collapse mechanisms, (3) detailed global analyses. Because of the complexity and the large variety of existing masonry typologies, which makes it particularly problematic to adopt a unique procedure for all existing structures, the guidelines provide different simplified analysis approaches for different structural configurations, e.g. churches, palaces, towers. Among the existing typologies of masonry structures there considered, this work aims to deepen validity, effectiveness and scope of application of the Italian guidelines with respect to heritage masonry towers. The three evaluation levels proposed by the guidelines are here compared by discussing the seismic risk assessment of a representative masonry tower: the Cugnanesi tower located in San Gimignano (Italy). The results show that global failure modes due to local stress concentrations cannot be identified if only simplified static and kinematic analyses are performed. Detailed global analyses are in fact generally needed for a reliable prediction of the seismic performance of such structures.


2020 ◽  
Author(s):  
George Karagiannakis

This paper deals with state of the art risk and resilience calculations for industrial plants. Resilience is a top priority issue on the agenda of societies due to climate change and the all-time demand for human life safety and financial robustness. Industrial plants are highly complex systems containing a considerable number of equipment such as steel storage tanks, pipe rack-piping systems, and other installations. Loss Of Containment (LOC) scenarios triggered by past earthquakes due to failure on critical components were followed by severe repercussions on the community, long recovery times and great economic losses. Hence, facility planners and emergency managers should be aware of possible seismic damages and should have already established recovery plans to maximize the resilience and minimize the losses. Seismic risk assessment is the first step of resilience calculations, as it establishes possible damage scenarios. In order to have an accurate risk analysis, the plant equipment vulnerability must be assessed; this is made feasible either from fragility databases in the literature that refer to customized equipment or through numerical calculations. Two different approaches to fragility assessment will be discussed in this paper: (i) code-based Fragility Curves (FCs); and (ii) fragility curves based on numerical models. A carbon black process plant is used as a case study in order to display the influence of various fragility curve realizations taking their effects on risk and resilience calculations into account. Additionally, a new way of representing the total resilience of industrial installations is proposed. More precisely, all possible scenarios will be endowed with their weighted recovery curves (according to their probability of occurrence) and summed together. The result is a concise graph that can help stakeholders to identify critical plant equipment and make decisions on seismic mitigation strategies for plant safety and efficiency. Finally, possible mitigation strategies, like structural health monitoring and metamaterial-based seismic shields are addressed, in order to show how future developments may enhance plant resilience. The work presented hereafter represents a highly condensed application of the research done during the XP-RESILIENCE project, while more detailed information is available on the project website https://r.unitn.it/en/dicam/xp-resilience.


2019 ◽  
Vol 1 (Special Issue on First SACEE'19) ◽  
pp. 55-75
Author(s):  
Fabio Sabetta

In this paper, the main features of the policies adopted in Italy for seismic risk reduction are discussed. Particular attention is given to the Pre-disaster prevention activities such as the implementation of the building code, the seismic risk assessment for a priority scale of intervention, tax incentives and public funding for the vulnerability reduction of the existing buildings, information to population and school education, technical training of experts. The phases of response and post-disaster activities, including emergency management, search and rescue, loss scenarios, and safety assessment of buildings, are also discussed taking example from the most recent devastating earthquakes in Italy (L.Aquila 2009, Amatrice 2016).


Sign in / Sign up

Export Citation Format

Share Document