Finite element study of headed shear studs embedded in ultra-high performance concrete

2019 ◽  
Vol 188 ◽  
pp. 538-552 ◽  
Author(s):  
Dominic Kruszewski ◽  
Arash E. Zaghi ◽  
Kay Wille
2021 ◽  
Vol 294 ◽  
pp. 04004
Author(s):  
YiChen Fang

The history of the development of Ultra-High Performance Concrete (UHPC) shear walls and the current status of today’s research as well as the future development prospects are comprehensively collated. The analysis process and conclusive results of the present-day domestic and international research on UHPC shear walls are highlighted. The load displacement curves, hysteresis curves and skeleton lines of ultra-high performance concrete shear walls under different experimental loads are collated and compared. Integrate the corresponding equations for shear bearing capacity and equations for the overall specimen load displacement curves. A finite element model of the ultra-high performance concrete shear wall is established to simulate and perform non-linear finite element analysis of its force process under unidirectional horizontal loading.


2018 ◽  
Vol 22 (2) ◽  
pp. 323-336 ◽  
Author(s):  
Joung Rae Kim ◽  
Hyo-Gyoung Kwak ◽  
Byung-Suk Kim ◽  
Yangsu Kwon ◽  
El Mahdi Bouhjiti

This article presents analyses and the design of a post-tensioned anchorage zone made of ultra-high-performance concretes with three-dimensional finite element analyses. The structural behavior was investigated through the failure modes and cracking patterns to show the anchorage zone resistance enhancement with an increase of the strength in concrete. Since the anchorage failure is usually initiated from the local zone in the case of ultra-high-performance concrete beams that have compressive strength of more than 80 MPa, the placement of reinforcements can effectively be used to enhance the strength and ductility for the local zone. However, ultra-high-performance concrete requires a smaller amount of reinforcement than normal-strength concrete. Parametric analyses are carried out to show the effect of the spiral reinforcement on the strength of the anchorage zone, and comparison with the design guidelines in NCHRP Report 356 is made. Finally, improved guidelines are suggested to cover the design of ultra-high-performance concrete.


Author(s):  
Mohammed Ali Al-Osta

Several new types of materials have recently been used as retrofitting materials for structural elements such as ultra-high performance concrete with steel fiber reinforcement (UHPFRC). These materials are used as jacking to enhance the strength and ductility reinforced concrete (RC) beams. Considerable attention has been focused on the response of retrofitted RC beam under static loads but the behavior of such beam under impact loading is somewhat lacking. Therefore, in this study, a 3-D finite element model (FEM) of retrofitted RC beams under impact loading using non-linear finite element software (ABAQUS) was investigated. Since experimental work on this topic is scarce, the FEM is validated using the results of retrofitted RC beam under static loads. The impact load was applied in ABAQUS as equivalent to an initial velocity of 2500 mm/s. A parametric study was carried out to study the flexural response of RC beams retrofitted with different thicknesses and strengthening configurations of UHPFRC under impact loading.


Sign in / Sign up

Export Citation Format

Share Document