Nonlinear sloshing response of liquid-filled rectangular concrete tanks under seismic excitation

2019 ◽  
Vol 188 ◽  
pp. 564-577 ◽  
Author(s):  
M. Moslemi ◽  
A. Farzin ◽  
M.R. Kianoush
2021 ◽  
Vol 233 ◽  
pp. 111881
Author(s):  
Athanasios Tsourekas ◽  
Asimina Athanatopoulou ◽  
Konstantinos Kostinakis

2017 ◽  
Vol 754 ◽  
pp. 309-312 ◽  
Author(s):  
Robert Jankowski

During severe earthquakes, pounding between adjacent superstructure segments of highway elevated bridges was often observed. It is usually caused by the seismic wave propagation effect and may lead to significant damage. The aim of the present paper is to show the results of the numerical analysis focused on damage-involved pounding between neighbouring decks of an elevated bridge under seismic excitation. The analysis was carried out using a lumped mass structural model with every deck element discretized as a SDOF system. Pounding was simulated by the use of impact elements which become active when contact is detected. The linear viscoelastic model of collision was applied allowing for dissipation of energy due to damage at the contact points of colliding deck elements. The results show that pounding may substantially modify the behaviour of the analysed elevated bridge. It may increase the structural response or play a positive role, and the response depends on pattern of collisions between deck elements. The results also indicate that a number of impacts for a small in-between gap size is large, whereas the value of peak pounding force is low. On the other hand, the pounding force time history for large gap values shows only a few collisions, but the value of peak pounding force is substantially large, what may intensify structural damage.


Author(s):  
Helder J. D. Correia ◽  
Anto´nio C. Mendes ◽  
Carlos A. F. S. Oliveira

In the present work the action of earthquakes upon offshore jacket structures is analysed by means of ADINA software. Our case-study refers to an existing model structure, previously constructed at the Laboratory of Fluid Mechanics of UBI, which has been analysed from the hydrodynamic point of view — Mendes et al. [1, 2]. The seismic excitation will be imposed at the base of this model structure, with frequencies and amplitudes corresponding to actual earthquake conditions transposed to the model scale of 1:45. The FEM software is utilised to calculate the natural frequencies of the model and to obtain stresses at selected members, as well as their nodal displacements. Our purpose is to quantify maximum stresses occurring in critical structural members and to verify the survivability criterion. The predictions of the numerical model, in terms of the reaction forces at the base and acceleration at the top of the structure, are then correlated with the experimental measurements performed when the model structure is excited in an especially designed shaking table (Correia [3]), revealing a good agreement between both results.


Author(s):  
Nobuyuki Kobayashi ◽  
Keisaku Kitada ◽  
Yoshiki Sugawara

This paper investigates the parametric instability of a metallic bellows filled with fluid and subjected to the variance of dynamic internal pressure due to an earthquake. The axial stiffness of the bellows varies due to the variation in internal static fluid pressure, and this stiffness variation induces a parametric instability in the bellows. A finite element model describing a bellows connected to a pipe is developed to examine the question of whether parametric instability is excited in such bellows by earthquake motion, which is not the harmonic vibration. Numerical simulations and experiments were carried out using the acceleration recorded by past recorded actual earthquakes. We find that indeed parametric instability may appear in the bellows when the natural frequency of the pipe is close to the predominant frequency component of the earthquake, though the earthquake motion is not harmonic.


Sign in / Sign up

Export Citation Format

Share Document