Performance of steel dynamic message sign-support structures in extreme wind events

2021 ◽  
Vol 237 ◽  
pp. 112086
Author(s):  
Cole Shurbert-Hetzel ◽  
Behrouz Shafei ◽  
Brent Phares
2016 ◽  
Vol 31 (3) ◽  
pp. 985-1000 ◽  
Author(s):  
Nicholas J. Weber ◽  
Matthew A. Lazzara ◽  
Linda M. Keller ◽  
John J. Cassano

Abstract Numerous incidents of structural damage at the U.S. Antarctic Program’s (USAP) McMurdo Station due to extreme wind events (EWEs) have been reported over the past decade. Utilizing nearly 20 yr (~1992–2013) of University of Wisconsin automatic weather station (AWS) data from three different stations in the Ross Island region (Pegasus North, Pegasus South, and Willie Field), statistical analysis shows no significant trends in EWE frequency, intensity, or duration. EWEs more frequently occur during the transition seasons. To assess the dynamical environment of these EWEs, Antarctic Mesoscale Prediction System (AMPS) forecast back trajectories are computed and analyzed in conjunction with several other AMPS fields for the strongest events at McMurdo Station. The synoptic analysis reveals that McMurdo Station EWEs are nearly always associated with strong southerly flow due to an approaching Ross Sea cyclone and an upper-level trough around Cape Adare. A Ross Ice Shelf air stream (RAS) environment is created with enhanced barrier winds along the Transantarctic Mountains, downslope winds in the lee of the glaciers and local topography, and a tip jet effect around Ross Island. The position and intensity of these Ross Sea cyclones are most influenced by the occurrence of a central Pacific ENSO event, which causes the upper-level trough to move westward. An approaching surface cyclone would then be in position to trigger an event, depending on how the wind direction and speed impinges on the complex topography around McMurdo Station.


1988 ◽  
Vol 114 (12) ◽  
pp. 2755-2772
Author(s):  
Mohammad R. Ehsani ◽  
Reidar Bjorhovde

2021 ◽  
Author(s):  
Natalia Pillar da Silva ◽  
Rosmeri Porfírio da Rocha ◽  
Natália Machado Crespo ◽  
Ricardo de Camargo ◽  
Jose Antonio Moreira Lima ◽  
...  

<p>This study aims to evaluate how extreme winds (above the 95th percentile) are represented in a downscaling using the regional model WRF over the CORDEX South American domain in an approximate 25 km (0.22 degrees) horizontal resolution, along with CFSR as input. The main focus of the analysis resides over the coastal Brazilian region, given a large number of offshore structures from oil and gas industries subject to impact by severe events. Model results are compared with a reanalysis product (ERA5),  estimates from satellites product (Cross-Calibrated Multi-Platform Wind Speed), and available buoy data (Brazilian National Buoy Project). Downscaling results from WRF show an underestimation of maximum and extreme wind speeds over the region when compared to all references, along with overestimation in the continental areas. This directly impacts results for extreme value estimation for a larger return period and severity evaluation of extreme wind events in future climate projections. To address this, a correction procedure based on the linear relationship between severe wind from satellite and model results is applied. After linearly corrected, the extreme and maximum wind speed values increase and errors in the representation of severe events are reduced in the downscaling results.</p>


Author(s):  
Theresa M. Ahlborn ◽  
John W. van de Lindt ◽  
Alonso J. Uzcategui ◽  
Matthew E. Lewis

Sign in / Sign up

Export Citation Format

Share Document