mcmurdo station
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 12)

H-INDEX

27
(FIVE YEARS 2)

Author(s):  
Jackson Yip ◽  
Minghui Diao ◽  
Tyler Barone ◽  
Israel Silber ◽  
Andrew Gettelman

2021 ◽  
Author(s):  
Samuel Beal ◽  
Ashley Mossell ◽  
Jay Clausen

The study objectives were to determine the effectiveness of Fenton’s Reagent and Modified Fenton’s Reagent in reducing Total Petroleum Hydrocarbon (TPH) concentrations in petroleum-contaminated soil from McMurdo Station, Antarctica. Comparisons of the contaminated soils were made, and a treatability study was completed and documented. This material was presented at the Association for Environmental Health and Sciences Foundation (AEHS) 30th Annual International Conference on Soil, Water, Energy, and Air (Virtual) on March 25, 2021.


Author(s):  
Christopher Geach ◽  
Shaul Hanany ◽  
Chiou Yang Tan ◽  
Xin Zhi Tan

Author(s):  
Terence A. Palmer ◽  
Andrew G. Klein ◽  
Stephen T. Sweet ◽  
Paul A. Montagna ◽  
Larry J. Hyde ◽  
...  

2020 ◽  
Vol 12 (14) ◽  
pp. 2226
Author(s):  
Liuxi Tian ◽  
Hongjie Xie ◽  
Stephen F. Ackley ◽  
Kirsty J. Tinto ◽  
Robin E. Bell ◽  
...  

As part of the Polynyas and Ice Production in the Ross Sea (PIPERS) project, the IcePod system onboard the LC-130 aircraft based at McMurdo Station was flown over the Ross Sea, Antarctica in November 2016 and 2017, with the purpose of repeating the same lines that NASA’s Operation IceBridge (OIB) aircraft flew over in 2013. We resampled the lidar data into 70 m pixels (similar to the footprint size of OIB L2 and ICESat data) and took the mean of the lowest 2% elevation values of 25 km (50 km) length along a flight track as the local sea level of the central 25 km (50 km). Most of the IcePod data were over the same flight lines taken by OIB in 2013, so the total freeboard changes from 2013 to 2016 and 2017 were examined. Combining with the ICESat (2003–2008), we obtained a better picture of total freeboard and its interannual variability in the Ross Sea. The pattern of the sea ice distribution supports that new ice produced in coastal polynyas was transported northward by katabatic winds off the ice shelf. Compared to ICESat years, sea ice near the coast was thicker, while sea ice offshore was thinner in the more recent OIB/IcePod years. The results also showed that, in general, sea ice was thicker in 2017 compared to 2013 or 2016—0.02–0.55 m thicker in total freeboard.


2020 ◽  
Vol 13 (6) ◽  
pp. 3023-3031
Author(s):  
Alex T. Chartier ◽  
Juha Vierinen ◽  
Geonhwa Jee

Abstract. We present the first observations from a new low-cost oblique ionosonde located in Antarctica. The transmitter is located at McMurdo Station, Ross Island, and the receiver at Amundsen–Scott Station, South Pole. The system was demonstrated successfully in March 2019, with the experiment yielding over 30 000 ionospheric echoes over a 2-week period. These data indicate the presence of a stable E layer and a sporadic and variable F layer with dramatic spread F of sometimes more than 500 km (in units of virtual height). The most important ionospheric parameter, NmF2, validates well against the Jang Bogo Vertical Incidence Pulsed Ionospheric (VIPIR) ionosonde (observing more than 1000 km away). GPS-derived TEC data from the Multi-Instrument Data Analysis Software (MIDAS) algorithm can be considered necessary but insufficient to predict 7.2 MHz propagation between McMurdo and the South Pole, yielding a true positive in 40 % of cases and a true negative in 73 % of cases. The success of this pilot experiment at a total grant cost of USD 116 000 and an equipment cost of ∼ USD 15 000 indicates that a large multi-static network could be built to provide unprecedented observational coverage of the Antarctic ionosphere.


2020 ◽  
Author(s):  
Rosa Affleck ◽  
Amanda Barker ◽  
Anita Meyer ◽  
Jay Clausen
Keyword(s):  

2020 ◽  
Author(s):  
Samuel Beal ◽  
Ashley Mossell ◽  
Rosa Affleck ◽  
Jay Clausen ◽  
Nathan Williams

2020 ◽  
Author(s):  
Alex Timothy Chartier ◽  
Juha Vierinen ◽  
Geonhwa Jee

Abstract. We present the first observations from a new low-cost oblique ionosonde located in Antarctica. The transmitter is located at McMurdo Station, Ross Island and the receiver at Amundsen-Scott Station, South Pole. The system was demonstrated successfully in March 2019, with the experiment yielding over 30 000 ionospheric echoes over a two-week period. These data indicate the presence of a stable E-layer and a sporadic and variable F-layer with dramatic spread-F of sometimes more than 500 km (in units of virtual height). The most important ionospheric parameter, NmF2, validates well against the Jang Bogo VIPIR ionosonde (observing more than 1000 km away). GPS-derived TEC data from the MIDAS algorithm can be considered necessary but insufficient to predict 7.2 MHz propagation between McMurdo and South Pole, yielding a true positive in 40 % of cases and a true negative in 73 % of cases. The success of this pilot experiment at a total grant cost of $116k and an equipment cost of ~$15k indicates that a large multi-static network could be built to provide unprecedented observational coverage of the Antarctic ionosphere.


Sign in / Sign up

Export Citation Format

Share Document