Applying life-cycle assessment to low carbon fuel standards—How allocation choices influence carbon intensity for renewable transportation fuels

Energy Policy ◽  
2010 ◽  
Vol 38 (9) ◽  
pp. 5229-5241 ◽  
Author(s):  
Andrew S. Kaufman ◽  
Paul J. Meier ◽  
Julie C. Sinistore ◽  
Douglas J. Reinemann
Author(s):  
Michael Somers ◽  
Liaw Batan ◽  
Baha Al-Alawi ◽  
Thomas H. Bradley

Abstract The transportation sector accounts for over 20 percent of greenhouse gas (GHG) emissions in Colorado which without intervention will grow to over 30 million metric tons (MMT) of GHG emissions per year. This study seeks to develop a specific characterization of the Colorado fuel and transportation system using a customized life cycle assessment (LCA) model. The model (CO-GT) was developed as an analytical tool to define Colorado’s 2020 baseline life cycle GHG emissions for the transportation sector, and to examine Colorado-specific pathways for GHG reductions through fuel types and volumes changes that might be associated with a state clean fuel standard (CFS). By developing a life cycle assessment of transportation fuels that is specific to the state of Colorado’s geography, fleet makeup, policies, energy sector and more, these tools can evaluate various proposals for the transition towards a more sustainable state transportation system. The results of this study include a quantification of the Colorado-specific roles of clean fuels, electricity, extant policies, and fleet transition in projections of the state’s 2030 transportation sector GHG emissions. Relative to a 2020 baseline, electrification of the vehicle fleet is found to reduce state-wide lifecycle GHG emissions by 7.7 MMT CO2e by 2030, and a model CFS policy able to achieve similar reductions in the carbon intensity of clean fuels as was achieved by California in the first 10 years of its CFS policies is found to only reduce state-wide lifecycle GHG emissions by 0.2 MMT CO2e by 2030. These results illustrate the insensitivity of Colorado’s transportation fleet GHG emissions reductions to the presence of CFS policies, as proposed to date.


2021 ◽  
pp. 128886
Author(s):  
Gema Amaya-Santos ◽  
Suviti Chari ◽  
Alex Sebastiani ◽  
Fabio Grimaldi ◽  
Paola Lettieri ◽  
...  

2021 ◽  
Author(s):  
Brandon Wilbur

Whole-building model optimizations have been performed for a single-detached house in 5 locations with varying climates, electricity emissions factors, and energy costs. The multi-objective optimizations determine the life-cycle cost vs. operational greenhouse gas emissions Pareto front to discover the 30-year life-cycle least-cost building design heated 1) with natural gas, and 2) electrically using a) central air-source heat pump, b) ductless mini-split heat pump c)ground-source heat pump, and d) electric baseboard, accounting for both initial and operational energy-related costs. A net-zero carbon design with grid-tied photovoltaics is also optimized. Results indicate that heating system type influences the optimal enclosure design, and that neither building total energy use, nor space heating demand correspond to GHG emissions across heating system types. In each location, at least one type of all-electric design has a lower life-cycle cost than the optimized gas-heated model, and such designs can mitigate the majority of operational GHG emissions from new housing in locations with a low carbon intensity electricity supply.


2021 ◽  
Author(s):  
Tom Terlouw ◽  
Karin Treyer ◽  
christian bauer ◽  
Marco Mazzotti

Prospective energy scenarios usually rely on Carbon Dioxide Removal (CDR) technologies to achieve the climate goals of the Paris Agreement. CDR technologies aim at removing CO2 from the atmosphere in a permanent way. However, the implementation of CDR technologies typically comes along with unintended environmental side-effects such as land transformation or water consumption. These need to be quantified before large-scale implementation of any CDR option by means of Life Cycle Assessment (LCA). Direct Air Carbon Capture and Storage (DACCS) is considered to be among the CDR technologies closest to large-scale implementation, since first pilot and demonstration units have been installed and interactions with the environment are less complex than for biomass related CDR options. However, only very few LCA studies - with limited scope - have been conducted so far to determine the overall life-cycle environmental performance of DACCS. We provide a comprehensive LCA of different low temperature DACCS configurations - pertaining to solid sorbent-based technology - including a global and prospective analysis.


2021 ◽  
Author(s):  
Patrick W. Andres

Whole building energy and life cycle impact modeling was conducted for a single-family detached reference building designed to meet the Passive House Standard. Life cycle operating global warming potential (GWP) and building envelope embodied GWP were assessed for two mechanical system configurations and three Canadian cities. Variations in regional electricity carbon intensity were found to significantly impact both operating and embodied GWP. Embodied GWP was found to be significant relative to operating GWP in locations with access to low carbon electricity. Additionally, use of natural gas mechanical systems in Edmonton resulted in 360% greater operating emissions than in Montreal, while electric heat pump mechanicals yielded 6,600% higher emissions. Finally, the Passive House Standard method for quantifying operating GWP was found to overestimate emissions by up to 3700% in Montreal and underestimate emissions by 34% in Edmonton, when compared to a method accounting for variations in regional electricity carbon intensity.


2017 ◽  
Vol 144 ◽  
pp. 266-278 ◽  
Author(s):  
Hongbo Liu ◽  
Xinghua Wang ◽  
Jiangye Yang ◽  
Xia Zhou ◽  
Yunfeng Liu

Sign in / Sign up

Export Citation Format

Share Document