scholarly journals A Colorado-specific life cycle assessment model to support evaluation of low-carbon transportation fuels and policy

Author(s):  
Michael Somers ◽  
Liaw Batan ◽  
Baha Al-Alawi ◽  
Thomas H. Bradley

Abstract The transportation sector accounts for over 20 percent of greenhouse gas (GHG) emissions in Colorado which without intervention will grow to over 30 million metric tons (MMT) of GHG emissions per year. This study seeks to develop a specific characterization of the Colorado fuel and transportation system using a customized life cycle assessment (LCA) model. The model (CO-GT) was developed as an analytical tool to define Colorado’s 2020 baseline life cycle GHG emissions for the transportation sector, and to examine Colorado-specific pathways for GHG reductions through fuel types and volumes changes that might be associated with a state clean fuel standard (CFS). By developing a life cycle assessment of transportation fuels that is specific to the state of Colorado’s geography, fleet makeup, policies, energy sector and more, these tools can evaluate various proposals for the transition towards a more sustainable state transportation system. The results of this study include a quantification of the Colorado-specific roles of clean fuels, electricity, extant policies, and fleet transition in projections of the state’s 2030 transportation sector GHG emissions. Relative to a 2020 baseline, electrification of the vehicle fleet is found to reduce state-wide lifecycle GHG emissions by 7.7 MMT CO2e by 2030, and a model CFS policy able to achieve similar reductions in the carbon intensity of clean fuels as was achieved by California in the first 10 years of its CFS policies is found to only reduce state-wide lifecycle GHG emissions by 0.2 MMT CO2e by 2030. These results illustrate the insensitivity of Colorado’s transportation fleet GHG emissions reductions to the presence of CFS policies, as proposed to date.

Energy Policy ◽  
2010 ◽  
Vol 38 (9) ◽  
pp. 5229-5241 ◽  
Author(s):  
Andrew S. Kaufman ◽  
Paul J. Meier ◽  
Julie C. Sinistore ◽  
Douglas J. Reinemann

2021 ◽  
Author(s):  
Brandon Wilbur

Whole-building model optimizations have been performed for a single-detached house in 5 locations with varying climates, electricity emissions factors, and energy costs. The multi-objective optimizations determine the life-cycle cost vs. operational greenhouse gas emissions Pareto front to discover the 30-year life-cycle least-cost building design heated 1) with natural gas, and 2) electrically using a) central air-source heat pump, b) ductless mini-split heat pump c)ground-source heat pump, and d) electric baseboard, accounting for both initial and operational energy-related costs. A net-zero carbon design with grid-tied photovoltaics is also optimized. Results indicate that heating system type influences the optimal enclosure design, and that neither building total energy use, nor space heating demand correspond to GHG emissions across heating system types. In each location, at least one type of all-electric design has a lower life-cycle cost than the optimized gas-heated model, and such designs can mitigate the majority of operational GHG emissions from new housing in locations with a low carbon intensity electricity supply.


2021 ◽  
Author(s):  
Brandon Wilbur

Whole-building model optimizations have been performed for a single-detached house in 5 locations with varying climates, electricity emissions factors, and energy costs. The multi-objective optimizations determine the life-cycle cost vs. operational greenhouse gas emissions Pareto front to discover the 30-year life-cycle least-cost building design heated 1) with natural gas, and 2) electrically using a) central air-source heat pump, b) ductless mini-split heat pump c)ground-source heat pump, and d) electric baseboard, accounting for both initial and operational energy-related costs. A net-zero carbon design with grid-tied photovoltaics is also optimized. Results indicate that heating system type influences the optimal enclosure design, and that neither building total energy use, nor space heating demand correspond to GHG emissions across heating system types. In each location, at least one type of all-electric design has a lower life-cycle cost than the optimized gas-heated model, and such designs can mitigate the majority of operational GHG emissions from new housing in locations with a low carbon intensity electricity supply.


2020 ◽  
Vol 12 (11) ◽  
pp. 4628
Author(s):  
Rosario Tolomeo ◽  
Giovanni De Feo ◽  
Renata Adami ◽  
Libero Sesti Osséo

This study is a critical review of the application of life cycle assessment (LCA) to lithium ion batteries in the automotive sector. The aim of this study is to identify the crucial points of the analysis and the results achieved until now in this field. In the first part of the study, a selection of papers is reviewed. In the second part of the study, a methodological approach to LCA is adopted to make clear the strengths and weaknesses of this analysis method. The lack of primary data is a crucial concern. Even if the cradle-to-grave approach is the most chosen system boundary, further scientific contribution to the life cycle inventory phase is necessary. It is likely that the more the electric vehicle becomes widespread, the more data will be accessible. Many authors have not specified the chemistry of the used batteries (5% of the studies), the software tool used (30%) or the functional unit used (17%) and, consequently, their obtained results can be questionable. However, even with the aforementioned limitations, the performed review allows us to point out the potential of electric vehicles and lithium ion batteries to reduce the overall contribution of the transportation sector to GHG emissions.


Author(s):  
Julie Witcover ◽  
Colin Murphy

Oregon implemented a fuel carbon policy called the Clean Fuels Program (CFP) in 2016. Modeled largely on the Low Carbon Fuel Standard (LCFS) operated by California, the CFP sets a declining target for the average life cycle carbon intensity (CI) of transportation fuels used in the state. The CFP incentivizes the deployment of emissions-reducing fuels and vehicles, and can contribute toward economy-wide greenhouse gas reduction goals. This paper reviews program data from the first three years of the CFP’s operation, provides an overview of program characteristics, identifies key trends, and compares the CFP to the LCFS. While it is early in the program’s operational history and CI reduction targets are small, the available data indicate a program functioning as expected based on the experience of jurisdictions with similar programs. Aggregate emissions reductions have slightly exceeded targets resulting in the accumulation of a small bank of credits. Early compliance has largely been driven by blending of ethanol into retail gasoline and the introduction of greater volumes of diesel substitutes. Electric vehicles are a small but rapidly growing contributor to compliance. As targets grow more stringent, compliance will require greater volumes of low carbon fuels to be brought to market.


Author(s):  
M. von der Thannen ◽  
S. Hoerbinger ◽  
C. Muellebner ◽  
H. Biber ◽  
H. P. Rauch

AbstractRecently, applications of soil and water bioengineering constructions using living plants and supplementary materials have become increasingly popular. Besides technical effects, soil and water bioengineering has the advantage of additionally taking into consideration ecological values and the values of landscape aesthetics. When implementing soil and water bioengineering structures, suitable plants must be selected, and the structures must be given a dimension taking into account potential impact loads. A consideration of energy flows and the potential negative impact of construction in terms of energy and greenhouse gas balance has been neglected until now. The current study closes this gap of knowledge by introducing a method for detecting the possible negative effects of installing soil and water bioengineering measures. For this purpose, an environmental life cycle assessment model has been applied. The impact categories global warming potential and cumulative energy demand are used in this paper to describe the type of impacts which a bioengineering construction site causes. Additionally, the water bioengineering measure is contrasted with a conventional civil engineering structure. The results determine that the bioengineering alternative performs slightly better, in terms of energy demand and global warming potential, than the conventional measure. The most relevant factor is shown to be the impact of the running machines at the water bioengineering construction site. Finally, an integral ecological assessment model for applications of soil and water bioengineering structures should point out the potential negative effects caused during installation and, furthermore, integrate the assessment of potential positive effects due to the development of living plants in the use stage of the structures.


2021 ◽  
pp. 128886
Author(s):  
Gema Amaya-Santos ◽  
Suviti Chari ◽  
Alex Sebastiani ◽  
Fabio Grimaldi ◽  
Paola Lettieri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document