Transcriptomic and physiological analysis revealed the ammonium tolerance mechanisms of Myriophyllum aquaticum

Author(s):  
Ying Zhang ◽  
Baozhen Li ◽  
Feng Liu ◽  
Pei Luo ◽  
Yi Wang ◽  
...  
2018 ◽  
Vol 34 (1) ◽  
pp. 51-64
Author(s):  
A. Hemantaranjan ◽  
◽  
C.P. Malik ◽  
A. Nishant Bhanu ◽  
◽  
...  

2013 ◽  
Vol 20 (2) ◽  
pp. 316-326
Author(s):  
Huawen WU ◽  
Kaihong LU ◽  
Wei QIAN ◽  
Zhongming ZHENG ◽  
Huihuang CHEN ◽  
...  

Author(s):  
Noreen Zahra ◽  
Muhammad Bilal Hafeez ◽  
Kanval Shaukat ◽  
Abdul Wahid ◽  
Sadam Hussain ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jing Gao ◽  
Paula J. M. van Kleeff ◽  
Ka Wan Li ◽  
Albertus H. de Boer

AbstractTo date, few phenotypes have been described for Arabidopsis 14-3-3 mutants or the phenotypes showing the role of 14-3-3 in plant responding to abiotic stress. Although one member of the 14-3-3 protein family (14-3-3 omicron) was shown to be involved in the proper operation of Fe acquisition mechanisms at physiological and gene expression levels in Arabidopsis thaliana, it remains to be explored whether other members play a role in regulating iron acquisition. To more directly and effectively observe whether members of 14-3-3 non-epsilon group have a function in Fe-deficiency adaptation, three higher order quadruple KOs, kappa/lambda/phi/chi (klpc), kappa/lambda/upsilon/nu(klun), and upsilon/nu/phi/chi (unpc) were generated and studied for physiological analysis in this study. The analysis of iron-utilization efficiency, root phenotyping, and transcriptional level of Fe-responsive genes suggested that the mutant with kl background showed different phenotypes from Wt when plants suffered Fe starved, while these phenotypes were absent in the unpc mutant. Moreover, the absence of the four 14-3-3 isoforms in the klun mutant has a clear impact on the 14-3-3 interactome upon Fe deficiency. Dynamics of 14-3-3-client interactions analysis showed that 27 and 17 proteins differentially interacted with 14-3-3 in Wt and klun roots caused by Fe deficiency, respectively. Many of these Fe responsive proteins have a role in glycolysis, oxidative phosphorylation and TCA cycle, the FoF1-synthase and in the cysteine/methionine synthesis. A clear explanation for the observed phenotypes awaits a more detailed analysis of the functional aspects of 14-3-3 binding to the target proteins identified in this study.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 144
Author(s):  
William Little ◽  
Caroline Black ◽  
Allie Clinton Smith

With the development of next generation sequencing technologies in recent years, it has been demonstrated that many human infectious processes, including chronic wounds, cystic fibrosis, and otitis media, are associated with a polymicrobial burden. Research has also demonstrated that polymicrobial infections tend to be associated with treatment failure and worse patient prognoses. Despite the importance of the polymicrobial nature of many infection states, the current clinical standard for determining antimicrobial susceptibility in the clinical laboratory is exclusively performed on unimicrobial suspensions. There is a growing body of research demonstrating that microorganisms in a polymicrobial environment can synergize their activities associated with a variety of outcomes, including changes to their antimicrobial susceptibility through both resistance and tolerance mechanisms. This review highlights the current body of work describing polymicrobial synergism, both inter- and intra-kingdom, impacting antimicrobial susceptibility. Given the importance of polymicrobial synergism in the clinical environment, a new system of determining antimicrobial susceptibility from polymicrobial infections may significantly impact patient treatment and outcomes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hong Lang ◽  
Yuting He ◽  
Faliang Zeng ◽  
Fan Xu ◽  
Minghui Zhao ◽  
...  

AbstractWeedy rice is a valuable germplasm resource characterized by its high tolerance to both abiotic and biotic stresses. Abscisic acid (ABA) serves as a regulatory signal in plant cells as part of their adaptive response to stress. However, a global understanding of the response of weedy rice to ABA remains to be elucidated. In the present study, the sensitivity to ABA of weedy rice (WR04-6) was compared with that of temperate japonica Shennong9816 (SN9816) in terms of seed germination and post-germination growth via the application of exogenous ABA and diniconazole, an inhibitor of ABA catabolism. Physiological analysis and a transcriptomic comparison allowed elucidation of the molecular and physiological mechanisms associated with continuous ABA and diniconazole treatment. WR04-6 was found to display higher ABA sensitivity than SN9816, resulting in the rapid promotion of antioxidant enzyme activity. Comparative transcriptomic analyses indicated that the number of differentially expressed genes (DEGs) in WR04-6 seedlings treated with 2 μM ABA or 10 μM diniconazole was greater than that in SN9816 seedlings. Genes involved in stress defense, hormone signal transduction, and glycolytic and citrate cycle pathways were highly expressed in WR04-6 in response to ABA and diniconazole. These findings provide new insight into key processes mediating the ABA response between weedy and cultivated rice.


Sign in / Sign up

Export Citation Format

Share Document