Combining passive samplers and biomonitors to evaluate endocrine disrupting compounds in a wastewater treatment plant by LC/MS/MS and bioassay analyses

2009 ◽  
Vol 157 (10) ◽  
pp. 2716-2721 ◽  
Author(s):  
C. Liscio ◽  
E. Magi ◽  
M. Di Carro ◽  
M.J.-F. Suter ◽  
E.L.M. Vermeirssen
2016 ◽  
Vol 227 (6) ◽  
Author(s):  
Ana Rita Carvalho ◽  
Vítor Cardoso ◽  
Alexandre Rodrigues ◽  
Maria João Benoliel ◽  
Elizabeth Duarte

2017 ◽  
Vol 77 (2) ◽  
pp. 337-345 ◽  
Author(s):  
I. Brückner ◽  
K. Kirchner ◽  
Y. Müller ◽  
S. Schiwy ◽  
K. Klaer ◽  
...  

Abstract The project DemO3AC (demonstration of large-scale wastewater ozonation at the Aachen-Soers wastewater treatment plant, Germany) of the Eifel-Rur Waterboard contains the construction of a large-scale ozonation plant for advanced treatment of the entire 25 million m³/yr of wastewater passing through its largest wastewater treatment plant (WWTP). In dry periods, up to 70% of the receiving water consists of treated wastewater. Thus, it is expected that effects of ozonation on downstream water biocoenosis will become observable. Extensive monitoring of receiving water and the WWTP shows a severe pollution with micropollutants (already prior to WWTP inlet). (Eco-)Toxicological investigations showed increased toxicity at the inlet of the WWTP for all assays. However, endocrine-disrupting potential was also present at other sampling points at the WWTP and in the river and could not be eliminated sufficiently by the WWTP. Total cell counts at the WWTP are slightly below average. Investigations of antibiotic resistances show no increase after the WWTP outlet in the river. However, cells carrying antibiotic-resistant genes seem to be more stress resistant in general. Comparing investigations after implementation of ozonation should lead to an approximation of the correlation between micropollutants and water quality/biocoenosis and the effects that ozonation has on this matter.


2011 ◽  
Vol 8 (4) ◽  
pp. 363 ◽  
Author(s):  
Lena Vierke ◽  
Lutz Ahrens ◽  
Mahiba Shoeib ◽  
Eric J. Reiner ◽  
Rui Guo ◽  
...  

Environmental contextPolyfluoroalkyl compounds, widely used chemicals in consumer and industrial products, are global pollutants in the environment. Transport mechanisms and environmental pathways of these compounds, however, are not yet fully understood. We show that a wastewater treatment plant can be an important source for polyfluoroalkyl compounds to the atmosphere where they have the potential to be transported long distances. AbstractAn air sampling campaign was conducted at a wastewater treatment plant (WWTP) to investigate air concentrations and particle–gas partitioning of polyfluoroalkyl compounds (PFCs). Samples were collected at an aeration tank and a secondary clarifier using both active high volume samplers and passive samplers comprising sorbent-impregnated polyurethane foam (SIP) disks. Water to air transport of PFCs was believed to be enhanced at the aeration tank owing to aerosol-mediated transport caused by surface turbulence induced by aeration. Mean air concentrations of target PFCs at the aeration tank were enriched relative to the secondary clarifier by factors of ~19, ~4 and ~3 for ∑fluorotelomer alcohols (FTOHs) (11 000 v. 590 pg m–3), ∑perfluorooctane sulfonamides & perfluorooctane sulfonamidoethanols (FOSAs & FOSEs) (120 v. 30 pg m–3) and ∑perfluoroalkyl carboxylates & perfluoroalkyl sulfonates (PFCAs & PFSAs) (4000 v. 1300 pg m–3) respectively. The particle associated fraction in the atmosphere increased with increasing chain length for PFCAs (from 60 to 100%) and PFSAs were predominantly bound to particles (~98%). Lower fractions on particles were found for FTOHs (~3%), FOSAs (~30%) and FOSEs (~40%). The comparison of the active and passive air sampling showed good agreement.


Chemosphere ◽  
2009 ◽  
Vol 75 (3) ◽  
pp. 335-340 ◽  
Author(s):  
Tiziana Schilirò ◽  
Cristina Pignata ◽  
Renato Rovere ◽  
Elisabetta Fea ◽  
Giorgio Gilli

2017 ◽  
pp. 106
Author(s):  
Olanrewaju Olujimi ◽  
Olalekan Fatoki ◽  
James Odendaal

Continuous disposal of endocrine-disrupting chemicals (EDCs) into the environment can lead to serious human health problems and can affect aquatic organisms. A number of investigations suggested that final effluents of wastewater treatment plants are the main source of EDCs into the aquatic environment. A developed analytical method was used for the analysis of priority phenols as tert-butyl derivatives and phthalates in wastewater. Qualitative and quantitative analyses were performed by gas chromatography – mass spectrometry (GC–MS) using DB-5MS column. These compounds were evaluated using solid-phase extraction for raw and treated wastewater from a wastewater treatment plant. Concentrations of analytes ranged from below limit of detection to 570μgL-1 for phenols and below limit of quantification to 796μgL-1 for phthalates. Diethyl phthalate was the most prominent phthalate ester with pentachlorophenol for the corresponding phenol. The average percent removal varied from 52.63 to 100%. The result clearly shows that environmental endocrine disrupting chemicals are not completely removed from treated wastewater.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
T. Vega-Morales ◽  
Z. Sosa-Ferrera ◽  
J. J. Santana-Rodríguez

Liquid and solid samples from two wastewater treatment plants (WWTPs) on Gran Canaria Island (Spain) have been tested for the presence of compounds with endocrine-disrupting properties. The selected degradation stages were sampled bimonthly from each WWTP over the 12-month period from July 2010 to July 2011. The analytical methods used for the determination of the endocrine-disrupting compounds (EDCs) were based on on-line solid phase extraction, microwave-assisted extraction (MAE), and ultrasonic-assisted extraction (UAE) coupled to UHPLC-MS/MS. All of the hyphenated methodologies employed in this work showed good recoveries (72–104%) and sensitivities, with LODs lower than 7.0 ng L−1and 6.3 ng g−1for the dissolved and solid fractions, respectively. We have also evaluated the estrogenicity of the samples in terms of their estradiol equivalent concentrations (EEQs). The chemical analysis of the selected EDCs revealed fairly low concentrations for both natural and synthetic oestrogens, alkylphenolic compounds, and bisphenol-A in each of the dissolved, particulate, and sludge samples (ng L−1or ng g−1). However, the estimated estrogenic activity indicated that the majority of samples could represent an important environmental risk, clearly surpassing the threshold to exert deleterious consequences on living beings.


Sign in / Sign up

Export Citation Format

Share Document