scholarly journals Corrigendum to “Environmental concentrations of antibiotics alter zebrafish gut microbiome structure and potential functions” [Environ. Pollut. 278 (2021) 116760]

2021 ◽  
Vol 291 ◽  
pp. 118185
Author(s):  
Masood Ur Rehman Kayani ◽  
Kan Yu ◽  
Yushu Qiu ◽  
Yao Shen ◽  
Caixia Gao ◽  
...  
2021 ◽  
pp. 116760
Author(s):  
Masood ur Rehman Kayani ◽  
Kan Yu ◽  
Yushu Qiu ◽  
Yao Shen ◽  
Caixia Gao ◽  
...  

Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 39
Author(s):  
Binghua Sun ◽  
Xiaojuan Xu ◽  
Yingna Xia ◽  
Yumei Cheng ◽  
Shuxin Mao ◽  
...  

The gut microbiome is expected to adapt to the varying energetic and nutritional pressures in females of different reproductive states. Changes in the gut microbiome may lead to varying nutrient utilizing efficiency in pregnant and lactating female primates. In this study, we examined variation in the gut bacterial community composition of wild female Tibetan macaques (Macaca thibetana) across different reproductive states (cycling, pregnancy and lactation). Fecal samples (n = 25) were collected from ten adult females harvested across different reproductive states. Gut microbial community composition and potential functions were assessed using 16 S rRNA gene sequences. We found significant changes in gut bacterial taxonomic composition, structure and their potential functions in different reproductive states of our study species. In particular, the relative abundance of Proteobacteria increased significantly during pregnancy and lactation. In addition, the relative abundance of Succinivibrionaceae and Succinivibrio (Succinivibrionaceae) were overrepresented in pregnant females, whereas Bifidobacteriaceae and Bifidobacterium (Bifidobacteriaceae) were overrepresented in lactating females. Furthermore, the relative abundance of predicted functional genes of several metabolic pathways related to host’s energy and nutrition, such as metabolism of carbohydrates, cofactors and vitamins, glycans and other amino acids, were enriched in pregnancy and lactation. Our findings suggest that changes in the gut microbiome may play an important role in meeting the energetic needs of pregnant and lactating Tibetan macaques. Future studies of the “microbial reproductive ecology” of primates that incorporate food availability, reproductive seasonality, female reproductive physiology and gut inflammation are warranted.


Author(s):  
Sunmin Park ◽  
Sunna Kang ◽  
Da Sol Kim

Abstract. Folate and vitamin B12(V-B12) deficiencies are associated with metabolic diseases that may impair memory function. We hypothesized that folate and V-B12 may differently alter mild cognitive impairment, glucose metabolism, and inflammation by modulating the gut microbiome in rats with Alzheimer’s disease (AD)-like dementia. The hypothesis was examined in hippocampal amyloid-β infused rats, and its mechanism was explored. Rats that received an amyloid-β(25–35) infusion into the CA1 region of the hippocampus were fed either control(2.5 mg folate plus 25 μg V-B12/kg diet; AD-CON, n = 10), no folate(0 folate plus 25 μg V-B12/kg diet; AD-FA, n = 10), no V-B12(2.5 mg folate plus 0 μg V-B12/kg diet; AD-V-B12, n = 10), or no folate plus no V-B12(0 mg folate plus 0 μg V-B12/kg diet; AD-FAB12, n = 10) in high-fat diets for 8 weeks. AD-FA and AD-VB12 exacerbated bone mineral loss in the lumbar spine and femur whereas AD-FA lowered lean body mass in the hip compared to AD-CON(P < 0.05). Only AD-FAB12 exacerbated memory impairment by 1.3 and 1.4 folds, respectively, as measured by passive avoidance and water maze tests, compared to AD-CON(P < 0.01). Hippocampal insulin signaling and neuroinflammation were attenuated in AD-CON compared to Non-AD-CON. AD-FAB12 impaired the signaling (pAkt→pGSK-3β) and serum TNF-α and IL-1β levels the most among all groups. AD-CON decreased glucose tolerance by increasing insulin resistance compared to Non-AD-CON. AD-VB12 and AD-FAB12 increased insulin resistance by 1.2 and 1.3 folds, respectively, compared to the AD-CON. AD-CON and Non-AD-CON had a separate communities of gut microbiota. The relative counts of Bacteroidia were lower and those of Clostridia were higher in AD-CON than Non-AD-CON. AD-FA, but not V-B12, separated the gut microbiome community compared to AD-CON and AD-VB12(P = 0.009). In conclusion, folate and B-12 deficiencies impaired memory function by impairing hippocampal insulin signaling and gut microbiota in AD rats.


2019 ◽  
Author(s):  
M Krainer ◽  
J Sommer ◽  
D Silbert-Wagner ◽  
S Racedo ◽  
K Panzitt ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document