scholarly journals Effects of core formation on the Hf–W isotopic composition of the Earth and dating of the Moon-forming impact

2018 ◽  
Vol 499 ◽  
pp. 257-265 ◽  
Author(s):  
Rebecca A. Fischer ◽  
Francis Nimmo
Author(s):  
Alex N Halliday

New W isotope data for lunar metals demonstrate that the Moon formed late in isotopic equilibrium with the bulk silicate Earth (BSE). On this basis, lunar Sr isotope data are used to define the former composition of the Earth and hence the Rb–Sr age of the Moon, which is 4.48±0.02 Ga, or 70–110 Ma (million years) after the start of the Solar System. This age is significantly later than had been deduced from W isotopes based on model assumptions or isotopic effects now known to be cosmogenic. The Sr age is in excellent agreement with earlier estimates based on the time of lunar Pb loss and the age of the early lunar crust (4.46±0.04 Ga). Similar ages for the BSE are recorded by xenon and lead–lead, providing evidence of catastrophic terrestrial degassing, atmospheric blow-off and significant late core formation accompanying the ca 100 Ma giant impact. Agreement between the age of the Moon based on the Earth's Rb/Sr and the lead–lead age of the Moon is consistent with no major losses of moderately volatile elements from the Earth during the giant impact. The W isotopic composition of the BSE can be explained by end member models of (i) gradual accretion with a mean life of roughly 35 Ma or (ii) rapid growth with a mean life of roughly 10 Ma, followed by a significant hiatus prior to the giant impact. The former assumes that approximately 60 per cent of the incoming metal from impactors is added directly to the core during accretion. The latter includes complete mixing of all the impactor material into the BSE during accretion. The identical W isotopic composition of the Moon and the BSE limits the amount of material that can be added as a late veneer to the Earth after the giant impact to less than 0.3±0.3 per cent of ordinary chondrite or less than 0.5±0.6 per cent CI carbonaceous chondrite based on their known W isotopic compositions. Neither of these on their own is sufficient to explain the inventories of both refractory siderophiles such as platinum group elements and rhenium, and volatiles such as sulphur, carbon and water.


1989 ◽  
Vol 44 (10) ◽  
pp. 891-923 ◽  
Author(s):  
A. E. Ringwood

Abstract The early thermal state of the Earth provides important constraints on hypotheses relating to its origin and its connection with the Moon. The currently popular giant impact hypothesis of lunar origin requires the Earth’s mantle to have been completely melted during the impact. Differentiation of a molten mantle would have produced strong chemical and mineralogical stratification, causing the mantle to become gravitationally stable and resistant to convective rehomogenization. The resulting composition and mineralogy of the upper mantle and primitive crust would have been dramatically different from those which have existed during the past 3.8 b. y. It is concluded that the Earth’s mantle was not extensively melted at the conclusion of accretion of the planet and therefore the hypothesis that the Moon was formed by the impact of a martian-sized planetesimal on the proto-Earth is probably incorrect. Nevertheless, a wide range of geochemical evidence demonstrates the existence of a close genetic relationship between the Moon and the Earth’s mantle. The key evidence relates to the processes of core formation in planetary bodies and resultant abundance patterns of siderophile elements which remain in their silicate mantles. Because of the complexity of the core formation process within a given body and the multiplicity of chemical and physical processes involved, the mantle siderophile signature is expected to be a unique characteristic. Thus, the siderophile signatures of Mars and of the eucrite parent body are quite distinct from that of the Earth’s mantle. Lunar siderophile geochemistry is reviewed in detail. It is demonstrated that a large group of siderophile elements display similar abundances in the terrestrial and lunar mantles. The similarity implies that a major proportion of the material now in the Moon was derived from the Earth’s mantle after core formation. This implication, however, does not require that the bulk compositions of the lunar and terrestrial mantles should be essentially identical, as is often assumed. Factors which may contribute to significant compositional differences between the two bodies within the context of a close genetic relationship are reviewed. The most promising mechanism for removing terrestrial material from the Earth’s mantle arises from the impacts of a number of large (0.001 to 0.01 ME) but not giant (≥ 0.1 ME) planetesimals after core formation and at the terminal stage of the Earth’s accretion. These impacts evaporated several times their own masses of mantle material and shock-melted considerably more. However, they did not lead to complete or extensive (e.g. > 50%) melting of the entire mantle. Impact-generated clouds of shock-melted spray and vapours were accelerated to high velocities in the presence of a primitive terrestrial atmosphere that co-rotated with the Earth. This provided an effective means of transferring angular momentum from the Earth to the ejected material which condensed to form a ring of Earth-orbiting planetesimals and moonlets. The Moon was formed by coagulation from material derived from the outer regions of this ring. Accretion of the Earth in the presence of the gases of the solar nebula and the co-rotating primitive terrestrial atmosphere may also have provided a mechanism for generating the rapid prograde spin of the proto-Earth.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rebecca A. Fischer ◽  
Nicholas G. Zube ◽  
Francis Nimmo

AbstractThe Earth and Moon have identical or very similar isotopic compositions for many elements, including tungsten. However, canonical models of the Moon-forming impact predict that the Moon should be made mostly of material from the impactor, Theia. Here we evaluate the probability of the Moon inheriting its Earth-like tungsten isotopes from Theia in the canonical giant impact scenario, using 242 N-body models of planetary accretion and tracking tungsten isotopic evolution, and find that this probability is <1.6–4.7%. Mixing in up to 30% terrestrial materials increases this probability, but it remains <10%. Achieving similarity in stable isotopes is also a low-probability outcome, and is controlled by different mechanisms than tungsten. The Moon’s stable isotopes and tungsten isotopic composition are anticorrelated due to redox effects, lowering the joint probability to significantly less than 0.08–0.4%. We therefore conclude that alternate explanations for the Moon’s isotopic composition are likely more plausible.


Science ◽  
2007 ◽  
Vol 315 (5809) ◽  
pp. 217-219 ◽  
Author(s):  
James M. D. Day ◽  
D. Graham Pearson ◽  
Lawrence A. Taylor

A new combined rhenium-osmium– and platinum-group element data set for basalts from the Moon establishes that the basalts have uniformly low abundances of highly siderophile elements. The data set indicates a lunar mantle with long-term, chondritic, highly siderophile element ratios, but with absolute abundances that are over 20 times lower than those in Earth's mantle. The results are consistent with silicate-metal equilibrium during a giant impact and core formation in both bodies, followed by post–core-formation late accretion that replenished their mantles with highly siderophile elements. The lunar mantle experienced late accretion that was similar in composition to that of Earth but volumetrically less than (∼0.02% lunar mass) and terminated earlier than for Earth.


Author(s):  
Nicolas Dauphas ◽  
Christoph Burkhardt ◽  
Paul H. Warren ◽  
Teng Fang-Zhen

Geochemical evidence suggests that the material accreted by the Earth did not change in nature during Earth's accretion, presumably because the inner protoplanetary disc had uniform isotopic composition similar to enstatite chondrites, aubrites and ungrouped achondrite NWA 5363/5400. Enstatite meteorites and the Earth were derived from the same nebular reservoir but diverged in their chemical evolutions, so no chondrite sample in meteorite collections is representative of the Earth's building blocks. The similarity in isotopic composition (Δ 17 O, ε 50 Ti and ε 54 Cr) between lunar and terrestrial rocks is explained by the fact that the Moon-forming impactor came from the same region of the disc as other Earth-forming embryos, and therefore was similar in isotopic composition to the Earth. The heavy δ 30 Si values of the silicate Earth and the Moon relative to known chondrites may be due to fractionation in the solar nebula/protoplanetary disc rather than partitioning of silicon in Earth's core. An inversion method is presented to calculate the Hf/W ratios and ε 182 W values of the proto-Earth and impactor mantles for a given Moon-forming impact scenario. The similarity in tungsten isotopic composition between lunar and terrestrial rocks is a coincidence that can be explained in a canonical giant impact scenario if an early formed embryo (two-stage model age of 10–20 Myr) collided with the proto-Earth formed over a more protracted accretion history (two-stage model age of 30–40 Myr).


1966 ◽  
Vol 25 ◽  
pp. 373
Author(s):  
Y. Kozai

The motion of an artificial satellite around the Moon is much more complicated than that around the Earth, since the shape of the Moon is a triaxial ellipsoid and the effect of the Earth on the motion is very important even for a very close satellite.The differential equations of motion of the satellite are written in canonical form of three degrees of freedom with time depending Hamiltonian. By eliminating short-periodic terms depending on the mean longitude of the satellite and by assuming that the Earth is moving on the lunar equator, however, the equations are reduced to those of two degrees of freedom with an energy integral.Since the mean motion of the Earth around the Moon is more rapid than the secular motion of the argument of pericentre of the satellite by a factor of one order, the terms depending on the longitude of the Earth can be eliminated, and the degree of freedom is reduced to one.Then the motion can be discussed by drawing equi-energy curves in two-dimensional space. According to these figures satellites with high inclination have large possibilities of falling down to the lunar surface even if the initial eccentricities are very small.The principal properties of the motion are not changed even if plausible values ofJ3andJ4of the Moon are included.This paper has been published in Publ. astr. Soc.Japan15, 301, 1963.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 149-155 ◽  
Author(s):  
E. L. Ruskol

The difference between average densities of the Moon and Earth was interpreted in the preceding report by Professor H. Urey as indicating a difference in their chemical composition. Therefore, Urey assumes the Moon's formation to have taken place far away from the Earth, under conditions differing substantially from the conditions of Earth's formation. In such a case, the Earth should have captured the Moon. As is admitted by Professor Urey himself, such a capture is a very improbable event. In addition, an assumption that the “lunar” dimensions were representative of protoplanetary bodies in the entire solar system encounters great difficulties.


1962 ◽  
Vol 14 ◽  
pp. 133-148 ◽  
Author(s):  
Harold C. Urey

During the last 10 years, the writer has presented evidence indicating that the Moon was captured by the Earth and that the large collisions with its surface occurred within a surprisingly short period of time. These observations have been a continuous preoccupation during the past years and some explanation that seemed physically possible and reasonably probable has been sought.


Sign in / Sign up

Export Citation Format

Share Document