Large-scale thermal convection in sedimentary basins revealed by coupled quartz cementation-dissolution distribution pattern and reactive transport modeling – a case study of the Proterozoic Athabasca Basin (Canada)

2021 ◽  
Vol 574 ◽  
pp. 117168
Author(s):  
Yumeng Wang ◽  
Guoxiang Chi ◽  
Zenghua Li ◽  
Sean Bosman
2020 ◽  
Vol 54 (19) ◽  
pp. 12092-12101
Author(s):  
Paula Rodríguez-Escales ◽  
Carme Barba ◽  
Xavier Sanchez-Vila ◽  
Diederik Jacques ◽  
Albert Folch

2015 ◽  
Vol 537 ◽  
pp. 277-293 ◽  
Author(s):  
M.M. Rahman ◽  
M. Bakker ◽  
C.H.L. Patty ◽  
Z. Hassan ◽  
W.F.M. Röling ◽  
...  

2015 ◽  
Vol 18 (2) ◽  
pp. 310-328 ◽  
Author(s):  
P. Gamazo ◽  
L. J. Slooten ◽  
J. Carrera ◽  
M. W. Saaltink ◽  
S. Bea ◽  
...  

Reactive transport modeling involves solving several nonlinear coupled phenomena, among them, the flow of fluid phases, the transport of chemical species and energy, and chemical reactions. There are different ways to consider this coupling that might be more or less suitable depending on the nature of the problem to be solved. In this paper we acknowledge the importance of flexibility on reactive transport codes and how object-oriented programming can facilitate this feature. We present PROOST, an object-oriented code that allows solving reactive transport problems considering different coupling approaches. The code main classes and their interactions are presented. PROOST performance is illustrated by the resolution of a multiphase reactive transport problem where geochemistry affects hydrodynamic processes.


2021 ◽  
Vol 38 (3) ◽  
pp. 109-114
Author(s):  
Hang Deng ◽  
Alexis Navarre-Sitchler ◽  
Elanor Heil ◽  
Catherine Peters

Sign in / Sign up

Export Citation Format

Share Document