scholarly journals Coupling Flow, Heat, and Reactive Transport Modeling to Reproduce In Situ Redox Potential Evolution: Application to an Infiltration Pond

2020 ◽  
Vol 54 (19) ◽  
pp. 12092-12101
Author(s):  
Paula Rodríguez-Escales ◽  
Carme Barba ◽  
Xavier Sanchez-Vila ◽  
Diederik Jacques ◽  
Albert Folch
2012 ◽  
Vol 125-126 ◽  
pp. 16-23 ◽  
Author(s):  
Evelien Martens ◽  
Hongguang Zhang ◽  
Henning Prommer ◽  
Janek Greskowiak ◽  
Matthew Jeffrey ◽  
...  

2014 ◽  
Vol 1665 ◽  
pp. 63-69 ◽  
Author(s):  
Josep M. Soler ◽  
Olivier X. Leupin ◽  
Thomas Gimmi ◽  
Luc R. Van Loon

ABSTRACTIn the new DR-A in-situ diffusion experiment at Mont Terri, a perturbation (replacement of the initial synthetic porewater in the borehole with a high-salinity solution) has been induced to study the effects on solute transport and retention, and more importantly, to test the predictive capability of reactive transport codes. Reactive transport modeling is being performed by different teams (IDAEA-CSIC, PSI, Univ. Bern, Univ. British Columbia, Lawrence Berkeley Natl. Lab.). Initial modeling results using the CrunchFlow code and focusing on Cs+ behavior are reported here.


2003 ◽  
Vol 807 ◽  
Author(s):  
Urs Mäder ◽  
Bernd Frieg ◽  
Ignasi Puigdomenech ◽  
Michel Decombarieu ◽  
Mikazu Yui

ABSTRACTThe HPF project (Hyperalkaline Plume in Fractured rock) at the Grimsel Test Site comprises an underground long-term field experiment in a shear zone, in-situ radionuclide transport experiments, two laboratory core infiltration experiments, sophisticated reactive transport modeling exercises, studies on radionuclide stability and solubility, innovative on-line measurement techniques and development of equipment for high-pH conditions (K-Na-Ca-OH, pH = 13.4 at 15 °C). Results to date indicate a decrease in the overall transmissivity of the tested shear zone over a duration of 2 years accompanied by channeling of flow as evidenced by repeat dipole tracer testing with Na-fluorescein, 82Br, 131I, 24Na, and 85Sr. The associated evolution in fluid chemistry indicates the in situ formation of Ca-Si-hydrates. Tracer transport modeling of dipole tests are based either on a heterogeneous porous medium approach or on discrete fracture models. Reactive transport modeling is achieving reasonable agreement with a laboratory core infiltration experiment. Integral to the project are supporting sorption / stability studies, colloid measurements, and development of analytical and measurement techniques.


Sign in / Sign up

Export Citation Format

Share Document