fractured limestone
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 22)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Danquigny Charles ◽  
Massonnat Gérard ◽  
Barbier Mickaël ◽  
Bouxin Pierre ◽  
Dal Soglio Lucie ◽  
...  

Abstract Carbonate reservoirs exhibit an extreme geological heterogeneity inducing a great diversity of fluids flows. Grasping the plurality of flows and the corresponding geological features require data scarcely available from subsurface hydrocarbons fields and even rarely acquired together on outcrop analogues. Among the different sites of the ALBION R&D project, the LSBB underground research laboratory provides outstanding access to both fractured limestone and groundwater dynamics through several experimental areas, including a 3.8 km long tunnel, which penetrates the Barremian-Aptian Urgonian formation to a maximum depth of 519 m. This paper gives an overview of the data acquired and the different works carried out on the LSBB site. From this synthesis, it draws lessons on the characterization of outcrop analogues and some insights for the modeling of fractured carbonate reservoirs. The quantity and diversity of the data acquired on the LSBB site allow: (i) the construction of nested multi-scale geological models, (ii) the comparison of measurements of different physical properties to better characterize the reservoir properties of the fractured rock, (iii) a multi-scale and multi-support approach to heterogeneity. Defining a common geological framework (facies model, rock type classification, inventory of structural objects, etc.) appears to be an essential step, possibly iterative, for the coupled interpretation of the various acquisitions and the extrapolation of results. Building a common geological model as a framework for interpretation help cross-fertilisation between geoscience domains. However, despite the huge amount of data, performing relevant and parsimonious rock typing remains a delicate exercise. This reminds us of the great uncertainties that can exist in establishing rules and concepts from limited data sets, such as those classically available for operational studies. Beyond the characterization of the depositional environment, the observations emphasize the importance of understanding the structural and diagenetic history, which leads to different rock types and current reservoir properties, to successfully define such a rock classification. Furthermore, the organization of flow paths within the fractured medium and its evolution over geologic time condition the processes of diagenesis and karstification. Hydrological processes and history must therefore be taken into account in this genetic reconstruction.


2021 ◽  
Author(s):  
Mahamat Habib Abdelkerim Doutoum ◽  
Romulo Francisco Bermudez Alvarado ◽  
Ahmed Rashed Alaleeli ◽  
Thein Zaw Phyoe ◽  
Jose Salazar ◽  
...  

Abstract Lost circulation while drilling across vugular or naturally fractured limestone formations is a costly challenge and has financial impacts including nonproductive time and remedial operational expenses. Many fields in the UAE are encountering notorious lost circulation complications, which are difficult to control with conventional lost circulation solutions while drilling surface sections. Novel lightweight thixotropic cement has proven beneficial to take control of severe losses in these vugular and naturally fractured limestone formations. The main challenge while drilling across the surface section in UAE offshore field is the heavy or total loss of returns. Drilling performance is affected due to poor hole cleaning, a risk of stuck pipe, surface fluid handling problems, and well control risks. Conventional extended cement slurries have been widely used to cure losses while drilling but with limited success. A new lost circulation solution combines lightweight (10.5- lbm/galUS) high solids fraction cement (trimodal system) and a thixotropic agent, which develop fast gels with high compressive strength. Thus, it enables plugging of large voids and fractures to deliver the wellbore integrity required to continue drilling with enhanced performance and efficiency. Intensive laboratory qualification tests focusing on static gel strength and compressive strength development was performed to tailor the new solution. The results were promising with more than 100 lbf/100 ft2 of static gel strength in 10 minutes and compressive strength development of 1,000 psi within 24 hours at low surface temperature. In addition, a transition time (TT) on-off-on test demonstrated more rapid gel strength development when the shear is reduced and regained fluidity with reapplication of shear. In one of the wells, heavy losses were encountered while drilling across surface section. The lightweight thixotropic solution was pumped for the first time worldwide and it was shown that the innovative lost circulation solution was effective in significantly reducing the losses and enabled the operator to continue drilling to section TD. This case study demonstrates that this advanced system is effective in curing losses and reducing nonproductive time. The unique properties of faster rapid gel strength and high compressive strength make this solution effective for treating a wide range of lost circulation events while drilling. Furthermore, the advanced lightweight thixotropic cement lost circulation solution exhibits strong performance in curing heavy losses and establishing well integrity with reliability.


2021 ◽  
Author(s):  
Muhammad Jahangir Khan ◽  
◽  
Siddique Akhtar Ehsan ◽  
Umair Bin Nisar ◽  
Syed Shahrukh Ali ◽  
...  

This study is focused on imaging of weak zones in subsurface using borehole and geophysical datasets. These weak zones are present within Jhill limestone of Miocene age across the northern, Karachi. A total of forty-nine core samples were collected from eleven boreholes about 30 m deep within the study area. The core analysis reveals presence of cavities in fractured limestone at shallow and deep levels. The lateral extension and thickness of these weak zones are well imaged by the electrical resistivity tomography (ERT) dataset. The 2D tomographs of the six profiles show variability in the ground resistivity response. The ERT profiles are interpreted using on hand samples collects from boreholes. These tomographs reveal relatively high resistivity values interpreted as intercalation of dry clay and marl beds within limestone. The medium resistivity values suggest presence of clay and sand in highly fractured limestone or surficial dry features. The low resistivity values are interpreted to be originated 24 by the weak zones filled with lithologies having high moisture content within limestone. The collected core samples were analysed for geotechnical parameters. The integration of borehole and ERT datasets delineated weak zones in the northern and central regions, which should be well28 cemented to avoid any geohazard.


2021 ◽  
Vol 50 (7) ◽  
pp. 1871-1884
Author(s):  
Sawasdee Yordkayhun

The outstanding geosites in Satun UNESCO Global Geopark, Thailand are mainly karst topography. Sinkhole which is originated from the dissolution of karst rocks by groundwater or acidic rainwater is one of the potential natural disasters in these geosites. To gain the confident among geotourism, detecting karst features, cavities and surficial dissolution is crucial in risk assessment and sustainable geopark management. As a part of geohazard assessment, non-invasive geophysical methods were applied for detecting near-surface defects and karst features. In this study, electrical resistivity tomography (ERT), seismic tomography and multichannel analysis of surface waves (MASW) have been integrated to understand the mechanism of an existing sinkhole formation in Satun Geopark region. ERT appeared to be an effective approach to investigate the cavity development at shallow subsurface. MASW and seismic tomography were combined to help constrain the interpretation of lithology and karst features in vicinity of the sinkhole. The results indicated that the sinkhole occurrence in this area was probably developed by forming of cavity due to an increased dissolution of the fractured limestone bedrock. This carbonate layer is in contact with the overlying groundwater and weathering shale or cohesive soil layer. The changing of water table and infiltration of surface water by heavy rainfall allowed for a sudden vertical downward of overlying sediments into the empty voids, leading to the sinkhole hazard.


2021 ◽  
Author(s):  
Ali Khalid ◽  
Qasim Ashraf ◽  
Khurram Luqman ◽  
Ayoub Hadj-Moussa ◽  
Agha Ghulam Nabi ◽  
...  

Abstract As oil and gas reserves mature the world over, operators are looking towards advanced methods of increasing the ultimate recovery from their ageing fields. An energy deficient country of Pakistan relies heavily on oil and gas imports. The country was once self sustaining in at least natural gas needs. A major portion of this gas was produced from the Field-X which was discovered in the 1950’s. The primary reservoir in Field-X is the YZ-Limestone reservoir which bears sour gas. Due to extensive production from the YZ-Limestone formation, the reservoir pressure has depleted to a mere 2.0 PPG in equivalent mud weight, and it being a naturally fractured limestone formation presents numerous drilling challenges. The operator has evaluated a potential higher pressured formation in the deeper horizons of sui field but that requires drilling through approximately 650-690 meters of the YZ-Limestone formation. This feat when attempted conventionally is plagued with numerous problems like, total lost circulation, differential sticking, influxes due to the loss of a sufficient hydrostatic head, and stuck pipe following well control events. To mitigate these challenges the operator, need an effective method to drill through this depleted formation without pumping heavy LCM pills, and multiple cement plugs across the massive cavernous thief zones in the YZ-Limestone formation which could have been detrimental to the production of nearby wells. Moreover, such remedies with specialized LCM’s and acid soluble plugs would have resulted in excessive material cost and non-productive time, which in some instances extended to a period of more than a month. To address the aforementioned challenges in drilling the YZ-Limestone formation, a multiphase managed pressure drilling system was suggested to drill the formation with minimal non-productive time and cost. Multiphase hydraulics were performed to assess appropriate pumping parameters for a near-balanced condition across the YZ-Limestone formation. A closed loop MPD equipment system was designed to help maintain near-balanced conditions in pumping and static (non-circulating) periods. The designed equipment system would also ensure that the risk of H2S exposure to the atmosphere was eliminated. The application of a closed loop nitrified mpd system on a recently drilled well proved to be highly successful and reduced the drilling time to just 28 hours by not only eliminating fluid lost circulation but by also delivering an extremely high rate of penetration of 39.2 m/hr. The successful and exemplary application of nitrified MPD has opened up a new horizon for the development of deeper prospects in the Field-X and similar neighboring fields. The paper outlines the design and execution of the closed loop nitrified MPD system.


2021 ◽  
Author(s):  
Roberto Greco ◽  
Luca Comegna ◽  
Emilia Damiano ◽  
Pasquale Marino ◽  
Lucio Olivares

<p>Many mountainous areas of Campania, southern Italy, are characterized by steep slopes covered with shallow deposits of loose pyroclastic materials, usually in unsaturated conditions, mainly constituted by layers of volcanic ash and pumice lapilli. The total cover thickness is quite variable, between 1.5 m and 2.5 m in the steepest part of the slopes while it reaches several meters at the foot, and it lays upon fractured limestone bedrock. Such pyroclastic materials usually exhibit extremely high porosity (even up to 75%) and saturated hydraulic conductivity (in the order of 10<sup>-4</sup> m/s). The equilibrium of the soil cover is ensured, up to inclination angles of 50°, by the contribution of soil suction to shear strength. Wetting of the soil cover during rainfall infiltration can cause a reduction of suction and, therefore, of the effective shear strength. This action sometimes leads to the triggering of shallow landslides, which often develop in the form of fast and destructive flows.</p><p>To capture the main effects of precipitations on the equilibrium of these slopes, hydrological monitoring activities have been carried out at the slope of Cervinara, located around 40 km northeast of Naples, where a destructive flowslide occurred in December 1999. An automatic hydro-meteorological station was installed at the elevation of 585m a.s.l., immediately near the scarp of the major landslide occurred in 1999. The meteorological equipment includes a rain gauge, a thermo-hygrometer, a thermocouple for soil temperature, an anemometer, a pyranometer, and a barometric sensor. The hydrological equipment consists of six tensiometers (located at depths between -0.2 m and -3.0 m below the ground surface) and six metallic time domain reflectometry probes (buried at depths between -0.3 m and -2.0 m) for the measurements of soil suction and water content, respectively. Furthermore, the water level in two streams located at the foot of the slope has been first manually monitored every month, and then, since March 2019, one of the two stream sections was instrumented with a probe, measuring water pressure, temperature, and electrical conductivity with hourly resolution.</p><p>The measurements allowed quantifying the major hydrological processes draining the soil cover after rainwater infiltration (i.e. evapotranspiration, overland and sub-surface runoff, leakage through the soil-bedrock interface), eventually assessing the water balance of the slope for three hydrological years (2017-2018, 2018-2019, 2019-2020).  The field monitoring data allowed the identification of the complex hydrological processes involving the unsaturated pyroclastic soil and the shallow groundwater system developing in the limestone bedrock, which control the conditions that potentially predispose the slope to landslide triggering. Specifically, late autumn has been identified as the potentially most critical period, when drainage through the soil-bedrock interface is not yet effective, owing to the still dry conditions at the base of the soil cover, but the slope already receives large amounts of precipitation.</p>


2021 ◽  
Author(s):  
Nicola Pastore ◽  
Claudia Cherubini ◽  
Concetta Immacolata Giasi

<p>In shallow geothermal systems natural and forced groundwater movement as well as the temperature driven flow plays an important role on the borehole heat exchanger efficiency.</p><p>The analysis of the efficiency of innovative heat exchangers installed in a fractured limestone aquifer was carried out through three-dimensional numerical simulations and experimental investigations on physical models.</p><p>The coastal fractured limestone aquifer of the industrial area of Bari (Italy) was chosen as benchmark field site in order to identify the aquifer parameter range and the respective combinations. The role of seawater intrusion on the borehole heat exchanger efficiency was deepen .</p><p>The results disclosed that the efficiency of the innovative heat exchangers is strictly dependent on the aquifer transmissivity and groundwater flow under natural and forced groundwater conditions.</p><p>Discussion on the performance of the seasonal heat storage and the occurrence of the thermal interference between the borehole heat exchanger was presented.</p>


Sign in / Sign up

Export Citation Format

Share Document