Don't send us your waste gases: Public attitudes toward international carbon dioxide transportation and storage in Europe

2022 ◽  
Vol 87 ◽  
pp. 102450
Author(s):  
Christine Merk ◽  
Åsta Dyrnes Nordø ◽  
Gisle Andersen ◽  
Ole Martin Lægreid ◽  
Endre Tvinnereim
2021 ◽  
Author(s):  
Zuozhong Liang ◽  
Hong-Yan Wang ◽  
Haoquan Zheng ◽  
Wei Zhang ◽  
Rui Cao

The recent progress made on porphyrin-based frameworks and their applications in energy-related conversion technologies (e.g., ORR, OER and CO2RR) and storage technologies (e.g., Zn–air batteries).


2012 ◽  
Vol 199 (12) ◽  
pp. 1642-1651 ◽  
Author(s):  
Suttichai Assabumrungrat ◽  
Janewit Phromprasit ◽  
Siriporn Boonkrue ◽  
Worapon Kiatkittipong ◽  
Wisitsree Wiyaratn ◽  
...  

SPE Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Saira ◽  
Emmanuel Ajoma ◽  
Furqan Le-Hussain

Summary Carbon dioxide (CO2) enhanced oil recovery is the most economical technique for carbon capture, usage, and storage. In depleted reservoirs, full or near-miscibility of injected CO2 with oil is difficult to achieve, and immiscible CO2 injection leaves a large volume of oil behind and limits available pore volume (PV) for storing CO2. In this paper, we present an experimental study to delineate the effect of ethanol-treated CO2 injection on oil recovery, net CO2 stored, and amount of ethanol left in the reservoir. We inject CO2 and ethanol-treated CO2 into Bentheimer Sandstone cores representing reservoirs. The oil phase consists of a mixture of 0.65 hexane and 0.35 decane (C6-C10 mixture) by molar fraction in one set of experimental runs, and pure decane (C10) in the other set of experimental runs. All experimental runs are conducted at constant temperature 70°C and various pressures to exhibit immiscibility (9.0 MPa for the C6-C10 mixture and 9.6 MPa for pure C10) or near-miscibility (11.7 MPa for the C6-C10 mixture and 12.1 MPa for pure C10). Pressure differences across the core, oil recovery, and compositions and rates of the produced fluids are recorded during the experimental runs. Ultimate oil recovery under immiscibility is found to be 9 to 15% greater using ethanol-treated CO2 injection than that using pure CO2 injection. Net CO2 stored for pure C10 under immiscibility is found to be 0.134 PV greater during ethanol-treated CO2 injection than during pure CO2 injection. For the C6-C10 mixture under immiscibility, both ethanol-treated CO2 injection and CO2 injection yield the same net CO2 stored. However, for the C6-C10 mixture under near-miscibility,ethanol-treated CO2 injection is found to yield 0.161 PV less net CO2 stored than does pure CO2 injection. These results suggest potential improvement in oil recovery and net CO2 stored using ethanol-treated CO2 injection instead of pure CO2 injection. If economically viable, ethanol-treated CO2 injection could be used as a carbon capture, usage, and storage method in low-pressure reservoirs, for which pure CO2 injection would be infeasible.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wang Huiru ◽  
You Zhanping ◽  
Mo Fan ◽  
Liu Bin ◽  
Han Peng

In the carbon capture and storage (CCS) infrastructure, the risk of a high-pressure buried pipeline rupture possibly leads to catastrophic accidents due to the release of tremendous amounts of carbon dioxide (CO2). Therefore, a comprehensive understanding of the effects of CO2 dispersion pattern after release from CCS facilities is essential to allow the appropriate safety precautions to be taken. Due to variations in topography above the pipeline, the pattern of CO2 dispersion tends to be affected by the real terrain features, such as trees and hills. However, in most previous studies, the dynamic impact of trees on the wind field was often approximated to linear treatment or even ignored. In this article, a computational fluid dynamics (CFD) model was proposed to predict CO2 dispersion over shrubbery areas. The shrubs were regarded as a kind of porous media, and the model was validated against the results from experiment. It was found that shrubbery affected the flow field near the ground, enhancing the lateral dispersion of CO2. Compared with that of the shrub-free terrain, the coverage area of the three shrub terrains at 60 s increased by 8.1 times, 6.7 times, and 9.1 times, respectively. The influence of shrub height and porosity on CO2 dispersion is nonlinear. This research provides reliable data for the risk assessment of CCS.


1966 ◽  
Vol 19 (5) ◽  
pp. 871 ◽  
Author(s):  
T O'shea ◽  
RG Wales

The addition of casein and lecithin to a phosphate-saline diluent in which ram and bull spermatozoa were cooled to 5�C increased their subsequent viability at 37�C and the effects were additive. Casein and lecithin also increased the metabolism of fresh ram semen. After storage at 5�C, oxygen uptake and oxidation of lactate by ram and bull spermatozoa were lower than before storage. The decrease in the amount of fructose oxidized to carbon dioxide was greater.


2013 ◽  
Vol 13 ◽  
pp. 78-86 ◽  
Author(s):  
Yolanda Sanchez-Vicente ◽  
Trevor C. Drage ◽  
Martyn Poliakoff ◽  
Jie Ke ◽  
Michael W. George

Sign in / Sign up

Export Citation Format

Share Document