treated carbon
Recently Published Documents


TOTAL DOCUMENTS

475
(FIVE YEARS 85)

H-INDEX

35
(FIVE YEARS 5)

2021 ◽  
Vol 37 (6) ◽  
pp. 1324-1328
Author(s):  
Ajithkumar M ◽  
Arivoli S

The present study investigates the possible removal of Ni2+ ions from aqueous solution by using low-cost Hygrophila auriculata activated nano carbon (HA-ANC) as an adsorbent. The activated nano carbon had been prepared from Hygrophila auriculata stem waste as well; the raw material was carbonized with con. H2SO4 and activated by thermal action. Batch experiments were performed in order to calculate the percentage removal of Ni2+ ions for 90.737% at 60 oC. The properties of treated carbon and untreated carbon are compared using instrumental techniques such as FT-IR, XRD, SEM and EDX, which confirms Ni2+ ions adsorption onto HA-ANC. FT-IR showed that the surface of HA-ANC had more oxygen containing functional groups which enhanced the adsorption of Ni2+. XRD showed the nature of adsorbent, SEM images implies morphological deviance of before and after adsorption of Ni2+ onto HA-ANC and EDX showed that the C content of HA-ANC were higher than that of Ni2+/ HA-ANC.


Small Methods ◽  
2021 ◽  
pp. 2101060
Author(s):  
Byung Gon Kim ◽  
Sang Wook Park ◽  
Hong Jun Choi ◽  
Jun‐Woo Park ◽  
Hongkyung Lee ◽  
...  
Keyword(s):  

2021 ◽  
Vol 310 ◽  
pp. 125262
Author(s):  
Shaojie Li ◽  
Yuling Zhang ◽  
Chen Cheng ◽  
Han Wei ◽  
Shiguo Du ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1313
Author(s):  
Sofia Capelli ◽  
Ilaria Barlocco ◽  
Federico Maria Scesa ◽  
Xiaohui Huang ◽  
Di Wang ◽  
...  

The hydrogenation reaction of muconic acid, produced from biomass using fermentative processes, to bio-adipic acid is one of the most appealing green emerging chemical process. This reaction can be promoted by catalysts based on a metal belonging to the platinum group, and the use of a second metal can preserve and increase their activity. Pd–Au bimetallic nanoparticle samples supported on high-temperature, heat-treated carbon nanofibers were prepared using the sol immobilization method, changing the Pd–Au molar ratio. These catalysts were characterized by TEM, STEM, and XPS analysis and tested in a batch reactor pressurized with hydrogen, where muconic acid dissolved in water was converted to adipic acid. The synthesized Pd–Au bimetallic catalysts showed higher activity than monometallic Au and Pd material and better stability during the recycling tests. Moreover, the selectivity toward the mono-unsaturated changed by decreasing the Pd/Au molar ratio: the higher the amount of gold, the higher the selectivity toward the intermediates.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2445
Author(s):  
Aaron S. Krieg ◽  
Julia A. King ◽  
Gregory M. Odegard ◽  
Timothy R. Leftwich ◽  
Leif K. Odegard ◽  
...  

Huntsman–Merrimack MIRALON® carbon nanotubes (CNTs) are a novel, highly entangled, commercially available, and scalable format of nanotubes. As-received and acid-treated CNTs were added to aerospace grade epoxy (CYCOM® 977-3), and the composites were characterized. The epoxy resin is expected to infiltrate the network of the CNTs and could improve mechanical properties. Epoxy composites were tested for flexural and viscoelastic properties and the as-received and acid treated CNTs were characterized using Field-Emission Scanning and Transmission Electron Microscopy, X-Ray Photoelectron Spectroscopy, and Thermogravimetric Analysis. Composites containing 0.4 wt% as-received CNTs showed an increase in flexural strength, from 136.9 MPa for neat epoxy to 147.5 MPa. In addition, the flexural modulus increased from 3.88 GPa for the neat epoxy to 4.24 GPa and 4.49 GPa for the 2.0 wt% and 3.0 wt% as-received CNT/epoxy composites, respectively. FE-SEM micrographs indicated good dispersion of the CNTs in the as-received CNT/epoxy composites and the 10 M nitric acid 6 h treatment at 120 °C CNT/epoxy composites. CNTs treated with 10 M nitric acid for 6 h at 120 °C added oxygen containing functional groups (C–O, C=O, and O=C–O) and removed iron catalyst present on the as-received CNTs, but the flexural properties were not improved compared to the as-received CNT/epoxy composites.


Micromachines ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1096
Author(s):  
Yujia Liu ◽  
Edmund Lau ◽  
Dario Mager ◽  
Marc J. Madou ◽  
Maziar Ghazinejad

It is generally accepted that inducing molecular alignment in a polymer precursor via mechanical stresses influences its graphitization during pyrolysis. However, our understanding of how variations of the imposed mechanics can influence pyrolytic carbon microstructure and functionality is inadequate. Developing such insight is consequential for different aspects of carbon MEMS manufacturing and applicability, as pyrolytic carbons are the main building blocks of MEMS devices. Herein, we study the outcomes of contrasting routes of stress-induced graphitization by providing a comparative analysis of the effects of compressive stress versus standard tensile treatment of PAN-based carbon precursors. The results of different materials characterizations (including scanning electron microscopy, Raman and X-ray photoelectron spectroscopies, as well as high-resolution transmission electron microscopy) reveal that while subjecting precursor molecules to both types of mechanical stresses will induce graphitization in the resulting pyrolytic carbon, this effect is more pronounced in the case of compressive stress. We also evaluated the mechanical behavior of three carbon types, namely compression-induced (CIPC), tension-induced (TIPC), and untreated pyrolytic carbon (PC) by Dynamic Mechanical Analysis (DMA) of carbon samples in their as-synthesized mat format. Using DMA, the elastic modulus, ultimate tensile strength, and ductility of CIPC and TIPC films are determined and compared with untreated pyrolytic carbon. Both stress-induced carbons exhibit enhanced stiffness and strength properties over untreated carbons. The compression-induced films reveal remarkably larger mechanical enhancement with the elastic modulus 26 times higher and tensile strength 2.85 times higher for CIPC compared to untreated pyrolytic carbon. However, these improvements come at the expense of lowered ductility for compression-treated carbon, while tension-treated carbon does not show any loss of ductility. The results provided by this report point to the ways that the carbon MEMS industry can improve and revise the current standard strategies for manufacturing and implementing carbon-based micro-devices.


Author(s):  
I. V. Zlobina ◽  
I. S. Katsuba

Experimental studies of the influence of external climatic factors, taking into account exposure, on the change in the bending strength of control and microwave – treated carbon and fiberglass samples in the cured state were performed. An increase in the limit stresses of three – point bending of experimental carbon fiber samples compared to the control ones was found by 7…12 %, and fiberglassby 4…7 %. It is shown that with an increase in exposure to 14 months, the strength of control samples of carbon and fiberglass decreases by an average of 10 %. At the same time, the strength of the prototypes is reduced only by 4.4 %. With an increase in the moisture content of both control and experimental samples, a decrease in their strength is observed. In this case, the linear correlation is average (from– 0.44 to – 0.615). It is established that for experimental samples, the influence of the amount of absorbed moisture on the strength is manifested to a much lesser extent. For carbon fiber, the reduction is 16.6 %, for fiberglass – 12 %.


2021 ◽  
Vol 40 ◽  
pp. 102806
Author(s):  
Gyawali Ghanashyam ◽  
Hae Kyung Jeong

Sign in / Sign up

Export Citation Format

Share Document