Controlled micro/mesoporous carbon aerogel structure as a template for Bi2O3 nano-particles/rods to improve the performance of asymmetric supercapacitors

2021 ◽  
Vol 42 ◽  
pp. 102994
Author(s):  
M. Pooladi ◽  
M.M. Zerafat
2019 ◽  
Author(s):  
Kevin Gu ◽  
Eric J. Kim ◽  
Sunil K. Sharma ◽  

<p>Carbon aerogel possesses unique structural and electrical properties, such as high mesopore volume, specific surface area, and electrical conductivity, which make it suitable for use as a catalyst support in Proton Exchange Membrane Fuel Cells (PEMFC). In this study, we present a novel synthesis of highly mesoporous carbon aerogel via ambient-drying and investigate its application in PEMFCs. The structural effects of activation on carbon aerogel were also studied. The TEM, XRF, Non Localized Density Function Theory (NLDFT) and BJH analysis were carried out to observe the morphology and pore structure. Pt on carbon aerogel and activated carbon aerogel show efficient activity in both oxygen reduction and hydrogen oxidation reactions compared to Pt on Vulcan XC-72, with increases up to 715% and 195% in specific power density, respectively. The enhanced performance of carbon aerogel is attributed to its large specific surface area and high mesopore to micropore ratio. Accelerated stress tests show that carbon aerogel has comparable durability with Vulcan XC-72, while activated carbon aerogel is less durable than both materials. Thus, the mesoporous carbon aerogel provides an efficient, lower-cost alternative to existing microporous carbon material as a catalyst support in PEMFCs.</p><p></p>


2019 ◽  
Vol 852 ◽  
pp. 113504 ◽  
Author(s):  
Balakrishnan Saravanakumar ◽  
Chandran Radhakrishnan ◽  
Murugan Ramasamy ◽  
Rajendran Kaliaperumal ◽  
Allen J. Britten ◽  
...  

2018 ◽  
Vol 310 ◽  
pp. 166-175 ◽  
Author(s):  
Sansim Bengisu Barim ◽  
Selmi Erim Bozbag ◽  
Haibo Yu ◽  
Rıza Kızılel ◽  
Mark Aindow ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document