Effect of new overhead phase change material enclosure designs on thermo-electric performance of a photovoltaic panel

2022 ◽  
Vol 46 ◽  
pp. 103814
Author(s):  
Akshayveer ◽  
Amit Kumar ◽  
Ajeet Pratap Singh ◽  
O.P. Singh
2020 ◽  
Vol 22 (4) ◽  
pp. 1439-1452
Author(s):  
Mohamed L. Benlekkam ◽  
Driss Nehari ◽  
Habib Y. Madani

AbstractThe temperature rise of photovoltaic’s cells deteriorates its conversion efficiency. The use of a phase change material (PCM) layer linked to a curved photovoltaic PV panel so-called PV-mirror to control its temperature elevation has been numerically studied. This numerical study was carried out to explore the effect of inner fins length on the thermal and electrical improvement of curved PV panel. So a numerical model of heat transfer with solid-liquid phase change has been developed to solve the Navier–Stokes and energy equations. The predicted results are validated with an available experimental and numerical data. Results shows that the use of fins improve the thermal load distribution presented on the upper front of PV/PCM system and maintained it under 42°C compared with another without fins and enhance the PV cells efficiency by more than 2%.


2021 ◽  
Vol 165 ◽  
pp. 321-333
Author(s):  
S. Adibpour ◽  
A. Raisi ◽  
B. Ghasemi ◽  
A.R. Sajadi ◽  
G. Rosengarten

2017 ◽  
Vol 730 ◽  
pp. 563-568 ◽  
Author(s):  
Atthakorn Thongtha ◽  
Hoy Yen Chan ◽  
Paisit Luangjok

This study investigated the application of phase change material and fins into photovoltaic panel. The experimental design was divided into 2 cases: conventional photovoltaic and photovoltaic with phase change material and fins. The thermal performance and electrical efficiency was tested under the solar radiation simulator between 500 and 1000 W/m2. The insolation intensity was tested by an incident-light photometer. The power of the nine halogen lamps was controlled by a simple voltage control device. It was found that temperature of normal PV module is constant after the tested time of 20 minutes. The temperatures of PV module with phase change material and fins were lower than a normal PV module throughout the testing duration. Approximately 2-6% of photovoltaic module temperatures have decreased and this have improved the electrical efficiency of about 1-4%. This indicated the use of phase change material and fins is able to decrease the photovoltaic module temperature and thus increase the efficiency of photovoltaic module cooling.


Sign in / Sign up

Export Citation Format

Share Document