BPDET: An effective software bug prediction model using deep representation and ensemble learning techniques

2020 ◽  
Vol 144 ◽  
pp. 113085 ◽  
Author(s):  
Sushant Kumar Pandey ◽  
Ravi Bhushan Mishra ◽  
Anil Kumar Tripathi
2020 ◽  
Vol 20 (2) ◽  
pp. 18-26
Author(s):  
F. Saadaari Saadaari ◽  
D.. Mireku-Gyimah ◽  
B. M. Olaleye

The consequences of collapsed stopes can be dire in the mining industry. This can lead to the revocation of a mining license in most jurisdictions, especially when the harm costs lives. Therefore, as a mine planning and technical services engineer, it is imperative to estimate the stability status of stopes. This study has attempted to produce a stope stability prediction model adopted from stability graph using ensemble learning techniques. This study was conducted using 472 case histories from 120 stopes of AngloGold Ashanti Ghana, Obuasi Mine. Random Forest, Gradient Boosting, Bootstrap Aggregating and Adaptive Boosting classification algorithms were used to produce the models. A comparative analysis was done using six classification performance metrics namely Accuracy, Precision, Sensitivity, F1-score, Specificity and Mathews Correlation Coefficient (MCC) to determine which ensemble learning technique performed best in predicting the stability of a stope. The Bootstrap Aggregating model obtained the highest MCC score of 96.84% while the Adaptive Boosting model obtained the lowest score. The Specificity scores in decreasing order of performance were 98.95%, 97.89%, 96.32% and 95.26% for Bootstrap Aggregating, Gradient Boosting, Random Forest and Adaptive Boosting respectively. The results showed equal Accuracy, Precision, F1-score and Sensitivity score of 97.89% for the Bootstrap Aggregating model while the same observation was made for Adaptive Boosting, Gradient Boosting and Random Forest with 90.53%, 92.63% and 95.79% scores respectively. At a 95% confidence interval using Wilson Score Interval, the results showed that the Bootstrap Aggregating model produced the minimal error and hence was selected as the alternative stope design tool for predicting the stability status of stopes.   Keywords: Stope Stability, Ensemble Learning Techniques, Stability Graph, Machine Learning


2021 ◽  
Vol 21 (3) ◽  
pp. 1-17
Author(s):  
Wu Chen ◽  
Yong Yu ◽  
Keke Gai ◽  
Jiamou Liu ◽  
Kim-Kwang Raymond Choo

In existing ensemble learning algorithms (e.g., random forest), each base learner’s model needs the entire dataset for sampling and training. However, this may not be practical in many real-world applications, and it incurs additional computational costs. To achieve better efficiency, we propose a decentralized framework: Multi-Agent Ensemble. The framework leverages edge computing to facilitate ensemble learning techniques by focusing on the balancing of access restrictions (small sub-dataset) and accuracy enhancement. Specifically, network edge nodes (learners) are utilized to model classifications and predictions in our framework. Data is then distributed to multiple base learners who exchange data via an interaction mechanism to achieve improved prediction. The proposed approach relies on a training model rather than conventional centralized learning. Findings from the experimental evaluations using 20 real-world datasets suggest that Multi-Agent Ensemble outperforms other ensemble approaches in terms of accuracy even though the base learners require fewer samples (i.e., significant reduction in computation costs).


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3663
Author(s):  
Zun Shen ◽  
Qingfeng Wu ◽  
Zhi Wang ◽  
Guoyi Chen ◽  
Bin Lin

(1) Background: Diabetic retinopathy, one of the most serious complications of diabetes, is the primary cause of blindness in developed countries. Therefore, the prediction of diabetic retinopathy has a positive impact on its early detection and treatment. The prediction of diabetic retinopathy based on high-dimensional and small-sample-structured datasets (such as biochemical data and physical data) was the problem to be solved in this study. (2) Methods: This study proposed the XGB-Stacking model with the foundation of XGBoost and stacking. First, a wrapped feature selection algorithm, XGBIBS (Improved Backward Search Based on XGBoost), was used to reduce data feature redundancy and improve the effect of a single ensemble learning classifier. Second, in view of the slight limitation of a single classifier, a stacking model fusion method, Sel-Stacking (Select-Stacking), which keeps Label-Proba as the input matrix of meta-classifier and determines the optimal combination of learners by a global search, was used in the XGB-Stacking model. (3) Results: XGBIBS greatly improved the prediction accuracy and the feature reduction rate of a single classifier. Compared to a single classifier, the accuracy of the Sel-Stacking model was improved to varying degrees. Experiments proved that the prediction model of XGB-Stacking based on the XGBIBS algorithm and the Sel-Stacking method made effective predictions on diabetes retinopathy. (4) Conclusion: The XGB-Stacking prediction model of diabetic retinopathy based on biochemical and physical data had outstanding performance. This is highly significant to improve the screening efficiency of diabetes retinopathy and reduce the cost of diagnosis.


Sign in / Sign up

Export Citation Format

Share Document