Search and rescue optimization algorithm: A new optimization method for solving constrained engineering optimization problems

2020 ◽  
Vol 161 ◽  
pp. 113698
Author(s):  
Amir Shabani ◽  
Behrouz Asgarian ◽  
Miguel Salido ◽  
Saeed Asil Gharebaghi
2019 ◽  
Vol 2019 ◽  
pp. 1-23 ◽  
Author(s):  
Amir Shabani ◽  
Behrouz Asgarian ◽  
Saeed Asil Gharebaghi ◽  
Miguel A. Salido ◽  
Adriana Giret

In this paper, a new optimization algorithm called the search and rescue optimization algorithm (SAR) is proposed for solving single-objective continuous optimization problems. SAR is inspired by the explorations carried out by humans during search and rescue operations. The performance of SAR was evaluated on fifty-five optimization functions including a set of classic benchmark functions and a set of modern CEC 2013 benchmark functions from the literature. The obtained results were compared with twelve optimization algorithms including well-known optimization algorithms, recent variants of GA, DE, CMA-ES, and PSO, and recent metaheuristic algorithms. The Wilcoxon signed-rank test was used for some of the comparisons, and the convergence behavior of SAR was investigated. The statistical results indicated SAR is highly competitive with the compared algorithms. Also, in order to evaluate the application of SAR on real-world optimization problems, it was applied to three engineering design problems, and the results revealed that SAR is able to find more accurate solutions with fewer function evaluations in comparison with the other existing algorithms. Thus, the proposed algorithm can be considered an efficient optimization method for real-world optimization problems.


2019 ◽  
Vol 36 (5) ◽  
pp. 1744-1763
Author(s):  
Wensheng Xiao ◽  
Qi Liu ◽  
Linchuan Zhang ◽  
Kang Li ◽  
Lei Wu

PurposeBat algorithm (BA) is a global optimization method, but has a worse performance on engineering optimization problems. The purpose of this study is to propose a novel chaotic bat algorithm based on catfish effect (CE-CBA), which can effectively deal with optimization problems in real-world applications.Design/methodology/approachIncorporating chaos strategy and catfish effect, the proposed algorithm can not only enhance the ability for local search but also improve the ability to escape from local optima traps. On the one hand, the performance of CE-CBA has been evaluated by a set of numerical experiment based on classical benchmark functions. On the other hand, five benchmark engineering design problems have been also used to test CE-CBA.FindingsThe statistical results of the numerical experiment show the significant improvement of CE-CBA compared with the standard algorithms and improved bat algorithms. Moreover, the feasibility and effectiveness of CE-CBA in solving engineering optimization problems are demonstrated.Originality/valueThis paper proposed a novel BA with two improvement strategies including chaos strategy and catfish effect for the first time. Meanwhile, the proposed algorithm can be used to solve many real-world engineering optimization problems with several decision variables and constraints.


2015 ◽  
Vol 22 (3) ◽  
pp. 302-310 ◽  
Author(s):  
Amir H. GANDOMI ◽  
Amir H. ALAVI

A new metaheuristic optimization algorithm, called Krill Herd (KH), has been recently proposed by Gandomi and Alavi (2012). In this study, KH is introduced for solving engineering optimization problems. For more verification, KH is applied to six design problems reported in the literature. Further, the performance of the KH algorithm is com­pared with that of various algorithms representative of the state-of-the-art in the area. The comparisons show that the results obtained by KH are better than the best solutions obtained by the existing methods.


Author(s):  
Lv Wang ◽  
Teng Long ◽  
Lei Peng ◽  
Li Liu

At the aim of alleviating the computational burden of complicated engineering optimization problems, metamodels have been widely employed to approximate the expensive blackbox functions. Among the popular metamodeling methods RBF metamodel well balances the global approximation accuracy, computational cost and implementation difficulty. However, the approximation accuracy of RBF metamodel is heavily influenced by the width factors of kernel functions, which are hard to determine and actually depend on the numerical behavior of expensive functions and distribution of samples. The main contribution of this paper is to propose an optimized RBF (ORBF) metamodel for the purpose of improving the global approximation capability with an affordable extra computational cost. Several numerical problems are used to compare the global approximation performance of the proposed ORBF metamodeling methods to determine the promising optimization approach. And the proposed ORBF is also adopted in adaptive metamodel-based optimization method. Two numerical benchmark examples and an I-beam optimization design are used to validate the adaptive metamodel-based optimization method using ORBF metamodel. It is demonstrated that ORBF metamodeling is beneficial to improving the optimization efficiency and global convergence capability for expensive engineering optimization problems.


Sign in / Sign up

Export Citation Format

Share Document