scholarly journals A Novel Inertia Moment Estimation Algorithm Collaborated with Active Force Control Scheme for Wheeled Mobile Robot Control in Constrained Environments

2021 ◽  
pp. 115454
Author(s):  
Mohammed A.H. Ali ◽  
Muhammad S.A. Radzak ◽  
Musa Mailah ◽  
Nukman Yusoff ◽  
Bushroa Abd Razak ◽  
...  
2012 ◽  
Author(s):  
Musa Mailah ◽  
Wun Shiung Jonathan Chong

Prestasi lasak bagi skema kawalan robot sangat perlu untuk memastikan robot dapat bekerja dengan berkesan seperti yang dikehendaki dalam persekitaran terbatas melibatkan gangguan, perubahan parameter, ketidaktentuan dan kepelbagaian keadaan operasi. Kajian yang dibuat adalah berkaitan dengan satu skema kawalan daya aktif dan algoritma pembelajaran berlelaran (AFCAIL) yang melibatkan satu ciri pembaikan dalam bentuk penggunaan kriteria memberhenti yang sesuai dimuatkan dalam strategi kawalan. Skema tersebut digunapakai terhadap sistem pengolah robotik planar berlengan–dua yang beroperasi secara mendatar. Kriteria memberhenti yang dicadangkan adalah reka bentuk untuk memberhentikan proses pembelajaran berlelaran apabila syarat atau keadaan berkaitan dengan kejituan ketika melakukan tugas serta perolehan matriks inersia anggaran pengolah yang dikehendaki dapat dipenuhi. Dengan cara demikian, robot dikatakan dapat beroperasi dengan baik sebagaimana yang diarahkan. Keberkesanan skema juga dikaji dengan mengambil kira beberapa keadaan bebanan dan operasi. Kata kunci: Robot; kawalan daya aktif; algoritma pembelajaran berlelaran; kriterion memberhenti The robust performance of a robot control scheme is vital to ensure that the robot accomplishes its tasks desirably in a constraint environment involving disturbances, parametric changes, uncertainties and varied operating conditions. The study introduces the Active Force Control and Iterative Learning Algorithm (AFCAIL) scheme with an improved feature in the form of a suitably designed stopping criterion incorporated in the control strategy. The scheme is applied to the control of a horiziontally operated robotic two–link planar manipulator. The proposed stopping criterion is specifically designed to halt the iterative learning process when the conditions related to the accuracy of the performed tasks and the acquisition of appropriate estimated inertia matrix of the robot arm are favourably met. In this way, the robot is said to perform desirably and excellently. The effectiveness of the scheme is also investigated by considering a number different loading and operating conditions. Key words: Robot; active force control; iterative learning algorithm; stopping criterion


1970 ◽  
Vol 3 (1) ◽  
Author(s):  
Endra Pitowarno, Musa Mailah, Hishamuddin Jamaluddin

The active force control (AFC) method is known as a robust control scheme that dramatically enhances the performance of a robot arm particularly in compensating the disturbance effects. The main task of the AFC method is to estimate the inertia matrix in the feedback loop to provide the correct (motor) torque required to cancel out these disturbances. Several intelligent control schemes have already been introduced to enhance the estimation methods of acquiring the inertia matrix such as those using neural network, iterative learning and fuzzy logic. In this paper, we propose an alternative scheme called Knowledge-Based Trajectory Error Pattern Method (KBTEPM) to suppress the trajectory track error of the AFC scheme. The knowledge is developed from the trajectory track error characteristic based on the previous experimental results of the crude approximation method. It produces a unique, new and desirable error pattern when a trajectory command is forced. An experimental study was performed using simulation work on the AFC scheme with KBTEPM applied to a two-planar manipulator in which a set of rule-based algorithm is derived. A number of previous AFC schemes are also reviewed as benchmark. The simulation results show that the AFC-KBTEPM scheme successfully reduces the trajectory track error significantly even in the presence of the introduced disturbances.Key Words:  Active force control, estimated inertia matrix, robot arm, trajectory error pattern, knowledge-based.


Sign in / Sign up

Export Citation Format

Share Document