scholarly journals Permeability and fluid flow-induced wall shear stress in bone scaffolds with TPMS and lattice architectures: A CFD analysis

2020 ◽  
Vol 79 ◽  
pp. 376-385 ◽  
Author(s):  
Davar Ali ◽  
Mehmet Ozalp ◽  
Sebastien B.G. Blanquer ◽  
Selis Onel
2021 ◽  
Author(s):  
Amira Husni Talib ◽  
Ilyani Abdullah ◽  
Nik Nabilah Nik Mohd Naser

Biomechanisms ◽  
1992 ◽  
Vol 11 (0) ◽  
pp. 99-109 ◽  
Author(s):  
Takashi HIROSE ◽  
Akio TANABE ◽  
Kazuo TANISHITA

2017 ◽  
Vol 13 (4-2) ◽  
pp. 546-552 ◽  
Author(s):  
Hasan Basri ◽  
Jimmy Deswidawansyah Nasution ◽  
Ardiyansyah Syahrom ◽  
Mohd Ayub Sulong ◽  
Amir Putra Md. Saad ◽  
...  

This paper proposes an improved modeling approach for bone scaffolds biodegradation. In this study, the numerical analysis procedure and computer-based simulation were performed for the bone scaffolds with varying porosities in determining the wall shear stresses and the permeabilities along with their influences on the scaffolds biodegradation process while the bio-fluids flow through within followed with the change in the flow rates. Based on the experimental study by immersion testing from 0 to 72 hours of the time period, the specimens with different morphologies of the commercial bone scaffolds were collected into three groups samples of 30%, 41%, and 55% porosities. As the representative of the cancellous bone morphology, the morphological degradation was observed by using 3-D CAD scaffold models based on microcomputed tomography images. By applying the boundary conditions to the computational fluid dynamics (CFD) and the fluid-structure interaction (FSI) models, the wall shear stresses within the scaffolds due to fluid flow rates variation had been simulated and determined before and after degradation. The increase of fluid flow rates tends to raise the pressure drop for scaffold models with porosities lower than 50% before degradation. As the porosities increases, the pressure drop decreases with an increase in permeability within the scaffold. The flow rates have significant effects on scaffolds with higher pressure drops by introducing the wall shear stresses with the highest values and lower permeability. These findings indicate the importance of using accurate computational models to estimate shear stress and determine experimental conditions in perfusion bioreactors for tissue engineering more accurate results will be achieved to indicate the natural distributions of fluid flow velocity, wall shear stress, and pressure.


2019 ◽  
Vol 30 (7) ◽  
pp. 923-931
Author(s):  
Vinay N. Surya ◽  
Eleftheria Michalaki ◽  
Gerald G. Fuller ◽  
Alexander R. Dunn

Cytosolic calcium (Ca2+) is a ubiquitous second messenger that influences numerous aspects of cellular function. In many cell types, cytosolic Ca2+ concentrations are characterized by periodic pulses, whose dynamics can influence downstream signal transduction. Here, we examine the general question of how cells use Ca2+ pulses to encode input stimuli in the context of the response of lymphatic endothelial cells (LECs) to fluid flow. Previous work shows that fluid flow regulates Ca2+ dynamics in LECs and that Ca2+-dependent signaling plays a key role in regulating lymphatic valve formation during embryonic development. However, how fluid flow might influence the Ca2+ pulse dynamics of individual LECs has remained, to our knowledge, little explored. We used live-cell imaging to characterize Ca2+ pulse dynamics in LECs exposed to fluid flow in an in vitro flow device that generates spatial gradients in wall shear stress (WSS), such as are found at sites of valve formation. We found that the frequency of Ca2+ pulses was sensitive to the magnitude of WSS, while the duration of individual Ca2+ pulses increased in the presence of spatial gradients in WSS. These observations provide an example of how cells can separately modulate Ca2+ pulse frequency and duration to encode distinct forms of information, a phenomenon that could extend to other cell types.


1997 ◽  
Vol 273 (4) ◽  
pp. E751-E758 ◽  
Author(s):  
R. Smalt ◽  
F. T. Mitchell ◽  
R. L. Howard ◽  
T. J. Chambers

The nature of the stimulus sensed by bone cells during mechanical usage has not yet been determined. Because nitric oxide (NO) and prostaglandin (PG) production appear to be essential early responses to mechanical stimulation in vivo, we used their production to compare the responsiveness of bone cells to strain and fluid flow in vitro. Cells were incubated on polystyrene film and subjected to unidirectional linear strains in the range 500–5,000 microstrain (με). We found no increase in NO or PGE2 production after loading of rat calvarial or long bone cells, MC3T3-E1, UMR-106–01, or ROS 17/2.8 cells. In contrast, exposure of osteoblastic cells to increased fluid flow induced both PGE2 and NO production. Production was rapidly induced by wall-shear stresses of 148 dyn/cm2 and was observed in all the osteoblastic populations used but not in rat skin fibroblasts. Fluid flow appeared to act through an increase in wall-shear stress. These data suggest that mechanical loading of bone is sensed by osteoblastic cells through fluid flow-mediated wall-shear stress rather than by mechanical strain.


Sign in / Sign up

Export Citation Format

Share Document