Rheology, morphology and mechanical properties of polyethylene/ethylene vinyl acetate copolymer (PE/EVA) blends

2008 ◽  
Vol 44 (6) ◽  
pp. 1834-1842 ◽  
Author(s):  
M. Faker ◽  
M.K. Razavi Aghjeh ◽  
M. Ghaffari ◽  
S.A. Seyyedi
Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4669
Author(s):  
Łukasz Zedler ◽  
Paulina Burger ◽  
Shifeng Wang ◽  
Krzysztof Formela

Ground tire rubber (GTR) was reclaimed and modified with 10 phr of ethylene-vinyl acetate copolymer via low-temperature extrusion process. Processing, physico-mechanical properties, volatile organic compounds emission, and recycling possibility were investigated. In order to better understand the impact of used modifiers, their efficiency was compared with trans-polyoctenamer, which is an additive that is commercially dedicated to waste rubber recycling. The results showed that a relatively small amount of ethylene-vinyl acetate copolymer improves the mechanical properties of modified reclaimed GTR and also allows further recycling by multiple processing without the deterioration of performance after three cycles.


2020 ◽  
Vol 869 ◽  
pp. 76-81
Author(s):  
Vu Minh Trong ◽  
Bui Dinh Hoan

The fly ash from Pha Lai power plant was modified by vinyltrimetoxysilan (VTMS). The polymer composites based on low-density polyethylene (LDPE), ethylene vinyl acetate copolymer (EVA) and fly ash (FA) without and with vinyltrimetoxysilan (VTMS) modification were prepared by melt mixing in a Haake Rheomixer. The tensile strength and elongation at break of the LDPE/EVA/VFA composites were also higher than those of the LDPE/EVA/FA composites. The FESEM images proved that FA-VTMS particles disperse more regularly in the polymer matrix in comparison with FA without VTMS modification. In addition, the surface modification of the FA reduced the size of agglomeration of FA particles.


Sign in / Sign up

Export Citation Format

Share Document