Physiological evidence of a deficit to enhance the empathic response in schizophrenia

2014 ◽  
Vol 29 (8) ◽  
pp. 463-472 ◽  
Author(s):  
S. Corbera ◽  
S. Ikezawa ◽  
M.D. Bell ◽  
B.E. Wexler

AbstractEmpathy is crucial for maintaining effective social interactions. Research has identified both an early-emotional sharing and a late-cognitive component of empathy. Although considered a functionally vital social cognition process, empathy has scarcely been studied in schizophrenia (SZ). We used event-related potentials (ERPs) to study the temporal dynamics of empathic response in 19 patients with SZ and 18 matched healthy controls (HC) using an empathy for physical pain paradigm. Participants responded to pictures of hands in neutral and painful situations in an active empathic condition and one manipulated by task demands. Additionally, subjective ratings of the stimuli and empathic self-reports were collected. People with SZ had (1) decreased early-emotional ERP responses to pictures of others in pain; (2) decreased modulation by attention of late-cognitive ERP responses; (3) lower ratings of perspective taking and higher ratings of personal distress which were both related to decreased modulation of late-cognitive empathic responses; (4) a significant relationship between high affective overlap between somebody else's pain and their own pain and decreased modulation of late-cognitive empathic responses; (5) a distinct relationship between regulatory deficits in late-cognitive empathy and functioning. Patients had present but reduced early and late empathy-related ERPs. Patients also reported increased personal distress when faced with distress in others. The late ERP responses are thought to be associated with self-regulation and response modulation. The magnitude of these late responses was inversely associated with reported levels of personal distress in both patients and controls. Additionally, regulatory deficits in cognitive empathy were highly related with deficits in functioning. Decreased ability to regulate one's own emotional engagement and response to emotions of others may be an important source of distress and dysfunction in social situations for patients with schizophrenia.

2015 ◽  
Vol 27 (3) ◽  
pp. 492-508 ◽  
Author(s):  
Nicholas E. Myers ◽  
Lena Walther ◽  
George Wallis ◽  
Mark G. Stokes ◽  
Anna C. Nobre

Working memory (WM) is strongly influenced by attention. In visual WM tasks, recall performance can be improved by an attention-guiding cue presented before encoding (precue) or during maintenance (retrocue). Although precues and retrocues recruit a similar frontoparietal control network, the two are likely to exhibit some processing differences, because precues invite anticipation of upcoming information whereas retrocues may guide prioritization, protection, and selection of information already in mind. Here we explored the behavioral and electrophysiological differences between precueing and retrocueing in a new visual WM task designed to permit a direct comparison between cueing conditions. We found marked differences in ERP profiles between the precue and retrocue conditions. In line with precues primarily generating an anticipatory shift of attention toward the location of an upcoming item, we found a robust lateralization in late cue-evoked potentials associated with target anticipation. Retrocues elicited a different pattern of ERPs that was compatible with an early selection mechanism, but not with stimulus anticipation. In contrast to the distinct ERP patterns, alpha-band (8–14 Hz) lateralization was indistinguishable between cue types (reflecting, in both conditions, the location of the cued item). We speculate that, whereas alpha-band lateralization after a precue is likely to enable anticipatory attention, lateralization after a retrocue may instead enable the controlled spatiotopic access to recently encoded visual information.


Author(s):  
Robert West

Life is filled with goals or intentions that people hope to realize. Some of these are rather mundane (e.g., remembering to purchase a key ingredient for a recipe when stopping at the market), while others are more significant (e.g., remembering to pick up one’s child from school at the end of the day). Prospective memory represents the ability to form and then realize intentions at an appropriate time. A fundamental aspect of prospective memory is that one is engaged in one or more tasks (i.e., ongoing activities) between the formation of an intention and the opportunity to realize the goal. For instance, in the shopping example, one might form the intention at home and then travel to the market and collect several other items before walking past the desired ingredient. Considerable research has demonstrated that the efficiency of prospective memory declines with age, although age-related differences are not universal. The neurocognitive processes underpinning age-related differences in the formation and realization of delayed intentions have been investigated in studies using event-related brain potentials. This research reveals that age-related differences in prospective memory arise from the disruption of neural systems supporting the successful encoding of intentions, the detection of prospective memory cues, and possibly processes supporting the retrieval of intentions from memory when a cue is encountered or efficiently shifting from the ongoing activity to the prospective element of the task. Therefore, strategies designed to ameliorate age-related declines in prospective memory should target a variety of processes engaged during the encoding, retrieval, and enactment of delayed intentions.


2016 ◽  
Vol 45 (6) ◽  
pp. 1119-1132 ◽  
Author(s):  
Adam S. Grabell ◽  
Sheryl L. Olson ◽  
Twila Tardif ◽  
Meaghan C. Thompson ◽  
William J. Gehring

2019 ◽  
Author(s):  
Geoffrey Valentine ◽  
Margarita Zeitlin ◽  
Chu-Hsuan Kuo ◽  
Lee Osterhout

Abstract Background Scalp-recorded event-related potentials (ERPs) are poorly suited for certain types of source analysis. For example, it is often difficult to precisely assess whether two ERP waveforms were produced by similar neural sources, especially when the waveforms share the same polarity and a similar scalp topography and temporal dynamics. We report here an alternative method to establishing independence of neural sources grounded in the principle of superposition, which stipulates that electrical fields summate where they intersect in time and space. We assessed the independence of two frequently reported positive waves in the ERP literature, the P300 (elicited by unexpected stimuli) and P600 (elicited by syntactic anomalies). Subjects read sentences that contained a word that was either non-anomalous, unexpected in one feature (capitalized, different font, different font color, or ungrammatical), or unexpected in two features (capitalized and different font style, capitalized and different font color, or capitalized and ungrammatical). Thus, in the double anomaly condition, the similarity between a shared feature (i.e., capitalization) and a second feature was systematically manipulated across conditions from larger degree (i.e., font style) to lesser degree (i.e., ungrammatical) of feature similarity. Results We quantified the degree of source independence for the features of interest by applying a novel Additivity Index, which compares ERPs elicited by the doubly anomalous words to composite waveforms formed by mathematically summing the ERP response to singly anomalous words. The degree of source independence is reflected by the degree of summation, with Additivity scores ranging from 0 (completely non-independent) to 1 (completely independent). The computed Additivity Index values varied with feature similarity in the predicted direction: similar features demonstrated lower Additivity Index values, or lower degrees of independence. On the other hand, dissimilar features manifested robust additivity, resulting in larger AI values. Conclusion We quantified the degree to which the P600 and P300 effects are neurally distinct across stimulus features with varying degrees of similarity by computing a continuous measure of independence via the Additivity Index. These findings indicate that the Additivity Index provides a valid and general method for quantifying the neural independence of scalp-recorded brain potentials.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1547
Author(s):  
Karina Maciejewska ◽  
Wojciech Froelich

Research on the functioning of human cognition has been a crucial problem studied for years. Electroencephalography (EEG) classification methods may serve as a precious tool for understanding the temporal dynamics of human brain activity, and the purpose of such an approach is to increase the statistical power of the differences between conditions that are too weak to be detected using standard EEG methods. Following that line of research, in this paper, we focus on recognizing gender differences in the functioning of the human brain in the attention task. For that purpose, we gathered, analyzed, and finally classified event-related potentials (ERPs). We propose a hierarchical approach, in which the electrophysiological signal preprocessing is combined with the classification method, enriched with a segmentation step, which creates a full line of electrophysiological signal classification during an attention task. This approach allowed us to detect differences between men and women in the P3 waveform, an ERP component related to attention, which were not observed using standard ERP analysis. The results provide evidence for the high effectiveness of the proposed method, which outperformed a traditional statistical analysis approach. This is a step towards understanding neuronal differences between men’s and women’s brains during cognition, aiming to reduce the misdiagnosis and adverse side effects in underrepresented women groups in health and biomedical research.


2020 ◽  
Author(s):  
Song Zhao ◽  
Chengzhi Feng ◽  
Xinyin Huang ◽  
Yijun Wang ◽  
Wenfeng Feng

Abstract The present study recorded event-related potentials (ERPs) in a visual object-recognition task under the attentional blink paradigm to explore the temporal dynamics of the cross-modal boost on attentional blink and whether this auditory benefit would be modulated by semantic congruency between T2 and the simultaneous sound. Behaviorally, the present study showed that not only a semantically congruent but also a semantically incongruent sound improved T2 discrimination during the attentional blink interval, whereas the enhancement was larger for the congruent sound. The ERP results revealed that the behavioral improvements induced by both the semantically congruent and incongruent sounds were closely associated with an early cross-modal interaction on the occipital N195 (192–228 ms). In contrast, the lower T2 accuracy for the incongruent than congruent condition was accompanied by a larger late occurring cento-parietal N440 (424–448 ms). These findings suggest that the cross-modal boost on attentional blink is hierarchical: the task-irrelevant but simultaneous sound, irrespective of its semantic relevance, firstly enables T2 to escape the attentional blink via cross-modally strengthening the early stage of visual object-recognition processing, whereas the semantic conflict of the sound begins to interfere with visual awareness only at a later stage when the representation of visual object is extracted.


2019 ◽  
Vol 9 (5) ◽  
pp. 116 ◽  
Author(s):  
Luis Aguado ◽  
Karisa Parkington ◽  
Teresa Dieguez-Risco ◽  
José Hinojosa ◽  
Roxane Itier

Faces showing expressions of happiness or anger were presented together with sentences that described happiness-inducing or anger-inducing situations. Two main variables were manipulated: (i) congruency between contexts and expressions (congruent/incongruent) and (ii) the task assigned to the participant, discriminating the emotion shown by the target face (emotion task) or judging whether the expression shown by the face was congruent or not with the context (congruency task). Behavioral and electrophysiological results (event-related potentials (ERP)) showed that processing facial expressions was jointly influenced by congruency and task demands. ERP results revealed task effects at frontal sites, with larger positive amplitudes between 250–450 ms in the congruency task, reflecting the higher cognitive effort required by this task. Effects of congruency appeared at latencies and locations corresponding to the early posterior negativity (EPN) and late positive potential (LPP) components that have previously been found to be sensitive to emotion and affective congruency. The magnitude and spatial distribution of the congruency effects varied depending on the task and the target expression. These results are discussed in terms of the modulatory role of context on facial expression processing and the different mechanisms underlying the processing of expressions of positive and negative emotions.


2019 ◽  
Vol 31 (11) ◽  
pp. 1755-1767 ◽  
Author(s):  
Holly J. Bowen ◽  
Eric C. Fields ◽  
Elizabeth A. Kensinger

Memory retrieval is thought to involve the reactivation of encoding processes. Previous fMRI work has indicated that reactivation processes are modulated by the residual effects of the prior emotional encoding context; different spatial patterns emerge during retrieval of memories previously associated with negative compared with positive or neutral context. Other research suggests that event-related potential (ERP) indicators of memory retrieval processes, like the left parietal old/new effect, can also be modulated by emotional context, but the spatial distribution and temporal dynamics of these effects are unclear. In the current study, we examined “when” emotion affects recognition memory and whether that timing reflects processes that come before and may guide successful retrieval or postrecollection recovery of emotional episodic detail. While recording EEG, participants ( n = 25) viewed neutral words paired with negative, positive, or neutral pictures during encoding, followed by a recognition test for the words. Analyses focused on ERPs during the recognition test. In line with prior ERP studies, we found an early positive-going parietally distributed effect starting around 200 msec after retrieval-cue onset. This effect emerged for words that had been encoded in an emotional compared with neutral context (no valence differences), before the general old/new effect. This emotion-dependent effect occurred in an early time window, suggesting that emotion-related reactivation is a precursor to successful recognition.


Sign in / Sign up

Export Citation Format

Share Document