scholarly journals Differential effects of Hsp90 inhibition on corneal cells in vitro and in vivo

2021 ◽  
Vol 202 ◽  
pp. 108362
Author(s):  
VijayKrishna Raghunathan ◽  
Sydney Garrison Edwards ◽  
Brian C. Leonard ◽  
Soohyun Kim ◽  
Alexander T. Evashenk ◽  
...  
2001 ◽  
Vol 34 (3-4) ◽  
Author(s):  
ASIM RAHMAN ◽  
MAHMOOD ALAM ◽  
SUDHA RAO ◽  
LIN CAI ◽  
CLARK LUTHER T. ◽  
...  

2020 ◽  
Vol 117 (48) ◽  
pp. 30670-30678
Author(s):  
Olivera Grbovic-Huezo ◽  
Kenneth L. Pitter ◽  
Nicolas Lecomte ◽  
Joseph Saglimbeni ◽  
Gokce Askan ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is typically diagnosed at an advanced stage, which limits surgical options and portends a dismal prognosis. Current oncologic PDAC therapies confer marginal benefit and, thus, a significant unmet clinical need exists for new therapeutic strategies. To identify effective PDAC therapies, we leveraged a syngeneic orthotopic PDAC transplant mouse model to perform a large-scale, in vivo screen of 16 single-agent and 41 two-drug targeted therapy combinations in mice. Among 57 drug conditions screened, combined inhibition of heat shock protein (Hsp)-90 and MEK was found to produce robust suppression of tumor growth, leading to an 80% increase in the survival of PDAC-bearing mice with no significant toxicity. Mechanistically, we observed that single-agent MEK inhibition led to compensatory activation of resistance pathways, including components of the PI3K/AKT/mTOR signaling axis, which was overcome with the addition of HSP90 inhibition. The combination of HSP90(i) + MEK(i) was also active in vitro in established human PDAC cell lines and in vivo in patient-derived organoid PDAC transplant models. These findings encourage the clinical development of HSP90(i) + MEK(i) combination therapy and highlight the power of clinically relevant in vivo model systems for identifying cancer therapies.


Zygote ◽  
2006 ◽  
Vol 14 (1) ◽  
pp. 81-87 ◽  
Author(s):  
P.N. Moreira ◽  
R. Fernández-Gonzalez ◽  
M.A. Ramirez ◽  
M. Pérez-Crespo ◽  
D. Rizos ◽  
...  

It is well known that the preimplantation culture environment to which embryos are exposed influences the expression of developmentally important genes. Recently, it has been reported that MEMα, a culture medium commonly used for somatic cells, allows high rates of preimplantation development and development to term of mouse somatic cell nuclear transfer (SCNT) embryos. The objective of this study was to compare the differential effects of this medium and of the nuclear transfer procedure on the relative mRNA abundance of several genes with key roles during preimplantation. The relative mRNA levels of nine genes (Glut 1, Glut 5, G6PDH, Bax, Survivin, Gpx 1, Oct4, mTert and IGF2bp1) were quantified at blastocyst stage on cumulus cell cloned embryos cultured in MEMα, as well as on in vivo cultured and MEMα cultured controls. Only three of the nine transcripts analysed (Glut 5, Gpx 1 and Igf2bp1) were significantly down-regulated at blastocyst stage in in vitro produced controls. However, most genes analysed in our MEMα cultured cloned embryos showed altered transcription levels. Interestingly, between cloned and in vitro produced controls only the transcription levels measured for Glut 1 were significantly different. This result suggests that Glut 1 may be a good marker for embryo quality after cumulus cell nuclear transfer.


Blood ◽  
2016 ◽  
Vol 128 (21) ◽  
pp. 2517-2526 ◽  
Author(s):  
Caron Jacobson ◽  
Nadja Kopp ◽  
Jacob V. Layer ◽  
Robert A. Redd ◽  
Sebastian Tschuri ◽  
...  

Key Points Inhibition of HSP90 targets multiple dependences in mantle cell lymphoma. Clinically available HSP90 inhibitors overcome ibrutinib resistance in vitro and in vivo.


2011 ◽  
Vol 668 (1-2) ◽  
pp. 35-41 ◽  
Author(s):  
Fausto Alejandro Jiménez-Orozco ◽  
Ana Alejandra Román Rosales ◽  
Armando Vega-López ◽  
Maria Lilia Domínguez-López ◽  
Ma. Juana García-Mondragón ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1656-1656
Author(s):  
Xuefang Cao ◽  
Karen Leonard

Abstract Abstract 1656 Poster Board I-682 To study the roles of IL-12 and Interferon-gamma (IFNg) in tumor immunity, we used RMAS lymphoma cells to challenge IL-12 receptor beta 2-deficient (IL-12Rb2-/-) and IFNg receptor 1-deficient (IFNgR1-/-) mice that are in the syngeneic C57BL/6J background. We intravenously injected mice with a dose of 1 × 104 RMAS cells that caused death in about 50% of wild-type (WT) mice. As shown in the Figure below, all of the WT mice treated with exogenous IL-12 were rescued from death caused by tumor growth; endogenous IL-12 was not sufficient to impact tumor growth since IL-12Rb2-/- mice showed a survival rate similar to that of WT mice. However, all of the IFNgR1-/- mice succumbed to tumor growth, indicating that endogenous IFNg is required for tumor immunity in this system. Furthermore, IL-12 treatment did not improve the survival of the IFNgR1-/- mice, suggesting that IFNg signaling is required for IL-12's anti-tumor effect. We previously showed that an IL-12/IFNg axis can inhibit tumor-induced regulatory T cell (Treg) proliferation in vitro (Cao et al, 2008 ASH Annual Meeting). We have subsequently examined their effects on Treg cells in vivo. Compared to naive mice, significant Treg expansion (4.9 ± 2.1 fold, n=5, p=0.025) was observed in the peritoneal cavity of WT mice within 2 weeks after an intraperitoneal injection of 1 × 104 RMAS cells. This expansion was completely blocked by treatment with exogenous IL-12. Treg cells in the IL-12Rb2-/- mice expanded to levels comparable to that in WT animals, suggesting that endogenous IL-12 was not sufficient to control Treg expansion. In contrast, significantly higher Treg expansion was observed in IFNgR1-/- mice (36.8 ± 11.8 fold, n=5, p=0.002), which was partially inhibited by IL-12 treatment (13.2 ± 3.5 fold, n=5, p=0.002), suggesting that an IFNg-independent mechanism may also account for IL-12's anti-Treg effect. To further study the effects of IL-12 and IFNg on cytotoxic T lymphocyte (CTL) function, we performed mixed lymphocyte reactions (MLR) and used flow-based killing assays (FloKA) to measure cell contact-dependent killing of allogeneic P815 tumor cells. MLR-activated CTLs were found to kill tumor targets via perforin/granzyme-mediated cytotoxicity. At a 10:1 (effector:target) ratio, granzyme AxB-deficient CTLs and perforin-deficient CTLs displayed significantly reduced killing (8.6 ± 1.2% and 4.5 ± 0.9%, respectively) compared to WT CTLs (36.1 ± 3.5%). IL-12 supplement (2ng/ml) to the MLR significantly increased the killing activity of WT CTLs (65.3 ± 4.2%), but had no significant effect on granzyme AxB-deficient CTLs or perforin-deficient CTLs. In contrast, IFNg supplement (10ng/ml) to the MLR had no significant effect on the killing activity of CTLs. Conversely, MLR-activated IFNgR1-/- CTLs killed P815 cells as efficiently as WT CTLs and responded to IL-12 treatment as efficiently as WT CTLs. Taken together, these data suggest that IL-12 treatment inhibits tumor-induced Treg expansion and stimulates IFNg-dependent anti-tumor immune responses. In addition, IL-12 also activates perforin/granzyme-dependent function of cytotoxic T lymphocytes. These differential effects on diverse immune components may collectively result in enhanced tumor immunity. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document