An investigation of DNA mismatch repair capacity under normal culture conditions and under conditions of supra-physiological challenge in human CD4+T cell clones from donors of different ages

2005 ◽  
Vol 40 (12) ◽  
pp. 976-981 ◽  
Author(s):  
Kathryn Annett ◽  
Orla Duggan ◽  
Robin Freeburn ◽  
Paul Hyland ◽  
Graham Pawelec ◽  
...  
2004 ◽  
Vol 39 (4) ◽  
pp. 491-498 ◽  
Author(s):  
Kathryn Annett ◽  
Paul Hyland ◽  
Orla Duggan ◽  
Christopher Barnett ◽  
Yvonne Barnett

2001 ◽  
Vol 120 (5) ◽  
pp. A519-A520
Author(s):  
Marika C. Kullberg ◽  
Dragana Jankovic ◽  
Patricia Caspar ◽  
Peter L. Gorelick ◽  
Allen Cheever ◽  
...  

2005 ◽  
Vol 98 (2) ◽  
pp. 253-258 ◽  
Author(s):  
Nadia Caccamo ◽  
Serena Meraviglia ◽  
Francesco Dieli ◽  
Amelia Romano ◽  
Lucina Titone ◽  
...  

1993 ◽  
Vol 113 (5) ◽  
pp. 545-548 ◽  
Author(s):  
Noriko M.Tsuji ◽  
Jun-ichi Kurisaki ◽  
Koko Mizumachi
Keyword(s):  
T Cell ◽  

2015 ◽  
Vol 1 ◽  
pp. 6
Author(s):  
M.F. Kearney ◽  
J. Spindler ◽  
M. Sobolewski ◽  
J.M. Coffin ◽  
J.W. Mellors

2015 ◽  
Vol 89 (8) ◽  
pp. 4449-4456 ◽  
Author(s):  
Sumiti Jain ◽  
Matthew T. Trivett ◽  
Victor I. Ayala ◽  
Claes Ohlen ◽  
David E. Ott

ABSTRACTThe expression of xenogeneic TRIM5α proteins can restrict infection in various retrovirus/host cell pairings. Previously, we have shown that African green monkey TRIM5α (AgmTRIM5α) potently restricts both human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus mac239 (SIVmac239) replication in a transformed human T-cell line (L. V. Coren, et al., Retrovirology 12:11, 2015,http://dx.doi.org/10.1186/s12977-015-0137-9). To assess AgmTRIM5α restriction in primary cells, we transduced AgmTRIM5α into primary rhesus macaque CD4 T cells and infected them with SIVmac239. Experiments with T-cell clones revealed that AgmTRIM5α could reproducibly restrict SIVmac239replication, and that this restriction synergizes with an intrinsic resistance to infection present in some CD4 T-cell clones. AgmTRIM5α transduction of virus-specific CD4 T-cell clones increased and prolonged their ability to suppress SIV spread in CD4 target cells. This increased antiviral function was strongly linked to decreased viral replication in the AgmTRIM5α-expressing effectors, consistent with restriction preventing the virus-induced cytopathogenicity that disables effector function. Taken together, our data show that AgmTRIM5α restriction, although not absolute, reduces SIV replication in primary rhesus CD4 T cells which, in turn, increases their antiviral function. These results support priorin vivodata indicating that the contribution of virus-specific CD4 T-cell effectors to viral control is limited due to infection.IMPORTANCEThe potential of effector CD4 T cells to immunologically modulate SIV/HIV infection likely is limited by their susceptibility to infection and subsequent inactivation or elimination. Here, we show that AgmTRIM5α expression inhibits SIV spread in primary effector CD4 T cellsin vitro. Importantly, protection of effector CD4 T cells by AgmTRIM5α markedly enhanced their antiviral function by delaying SIV infection, thereby extending their viability despite the presence of virus. Ourin vitrodata support priorin vivoHIV-1 studies suggesting that the antiviral CD4 effector response is impaired due to infection and subsequent cytopathogenicity. The ability of AgmTRIM5α expression to restrict SIV infection in primary rhesus effector CD4 T cells now opens an opportunity to use the SIV/rhesus macaque model to further elucidate the potential and scope of anti-AIDS virus effector CD4 T-cell function.


Sign in / Sign up

Export Citation Format

Share Document