Transfer of Diabetes in the NOD-scid Mouse by CD4 T-Cell Clones: Differential Requirement for CD8 T-Cells

Diabetes ◽  
1996 ◽  
Vol 45 (3) ◽  
pp. 328-336 ◽  
Author(s):  
J. D. Peterson ◽  
K. Haskins
Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3062-3062 ◽  
Author(s):  
Sanja Stevanovic ◽  
Cornelis A.M. van Bergen ◽  
Simone A.P. van Luxemburg-Heijs ◽  
Jessica C. Harskamp ◽  
C.J.M. Halkes ◽  
...  

Abstract Abstract 3062 T cell depletion of the graft in allogeneic hematopoietic stem cell transplantation (alloSCT) prevents the occurrence of severe acute Graft-versus-Host Disease (GvHD), but also impairs post-transplant anti-tumor and anti-viral immunity. Early intervention with donor lymphocyte infusion (DLI) after alloSCT may prevent relapse of the malignancy and improve immune reconstitution, but can be associated with reintroduction of GvHD. Since under non-inflammatory conditions HLA class II molecules are predominantly expressed on hematopoietic cells, DLI consisting of only CD4+ T cells can selectively target residual patient (pt) HLA class II + hematopoietic cells without inducing severe GvHD. However, recently in two pts with acute myeloid leukemia we observed severe GvHD after prophylactic CD4+ DLI following a 10/10 HLA allele matched, but HLA-DPB1 mismatched unrelated donor alloSCT. Both pts received a T cell depleted SCT after a non-myeloablative conditioning regimen, resulting in mixed chimerism (>97 % donor) at 3 months after alloSCT, and no GvHD. A single infusion of 0.5*106 purified CD4+ T cells/kg was administered 3.5 months after alloSCT, resulting in a decreasing pt chimerism coinciding with grade 1 skin GvHD, followed by grade 3–4 colonic GvHD 3–8 weeks later. Both pts were successfully treated with immune suppression and are in complete remission (CR) more than one year later. During the clinical immune responses high percentages of activated CD4+ (30–74 %) and CD8+ T cells (9–56 %) were demonstrated in peripheral blood (PB). Using cell sorting, we clonally isolated 777 and 289 CD4+, and 204 and 34 CD8+ T cell clones from pts 1 and 2, respectively, and tested these clones for recognition of multiple pt and donor derived target cells using IFNg ELISA. None of the CD8+ clones were alloreactive. In contrast, 3 and 8 % of the CD4+ T cell clones from pts 1 and 2, respectively, recognized various pt hematopoietic cells, but not donor cells, indicating alloreactivity. Retroviral transduction of donor EBV-LCL with pt HLA-DPB1 alleles identified specific recognition of the mismatched alleles for 2 and 7 % of all CD4+ T cell clones isolated, respectively. The remaining alloreactive CD4+ T cell clones showed a hematopoiesis-restricted minor histocompatibility antigen recognition pattern, since they failed to recognize pt skin fibroblasts pretreated with IFNg to upregulate HLA class II expression. In contrast, the majority of HLA-DPB1 specific CD4+ T cell clones recognized pt IFNg treated skin fibroblasts, indicating a direct role as mediators of GvHD after HLA-DPB1 mismatched CD4+ DLI. Since both pts were in CR, but mixed chimeric at the time of CD4+ DLI, we hypothesized that residual pt HLA-DP+ hematopoietic cells after alloSCT may have served as antigen presenting cells (APC) to induce the HLA-DPB1 specific CD4+ T cell response. Lineage specific chimerism analysis of PB samples prior to CD4+ DLI showed complete donor chimerism in the B cell and myeloid compartments, whereas predominantly pt chimerism (89–100% pt) was demonstrated in the T cell compartment. Flowcytometric analysis showed that 5–25 % of the pt CD4+ and CD8+ T cells were activated and expressed HLA-DP. CMV tetramer analysis demonstrated that 31 % of CD8+ T cells from pt 1 and 10 % from pt 2 were CMV specific, which had expanded as a consequence of CMV reactivation. We hypothesize that the HLA-DPB1 specific CD4+ T cell response has been induced by upregulated HLA-DP expression on activated pt T cells due to preexisting CMV infection, and/or by residual pt derived skin-resident APC, resulting in limited skin GvHD. We demonstrated CMV infection in a colon biopsy at the time of colonic GvHD, suggesting that local production of cytokines by pt derived CMV specific T cells may have upregulated HLA class II expression on non-hematopoietic cells and enhanced the HLA-DPB1 specific CD4+ T cell response, resulting in exacerbation of GvHD. In conclusion, we show in two pts that GvHD after prophylactic CD4+ DLI administered early after HLA-DPB1 mismatched T cell depleted alloSCT was caused by alloreactive CD4+ T cells directed against pt mismatched HLA-DPB1 alleles. Our results suggest that the presence of active viral infections inducing immune responses by residual pt T cells at the time of prophylactic HLA class II mismatched CD4+ DLI increases the likelihood of development of GvHD by influencing HLA class II expression on pt hematopoietic and non-hematopoietic cells. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 89 (8) ◽  
pp. 4449-4456 ◽  
Author(s):  
Sumiti Jain ◽  
Matthew T. Trivett ◽  
Victor I. Ayala ◽  
Claes Ohlen ◽  
David E. Ott

ABSTRACTThe expression of xenogeneic TRIM5α proteins can restrict infection in various retrovirus/host cell pairings. Previously, we have shown that African green monkey TRIM5α (AgmTRIM5α) potently restricts both human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus mac239 (SIVmac239) replication in a transformed human T-cell line (L. V. Coren, et al., Retrovirology 12:11, 2015,http://dx.doi.org/10.1186/s12977-015-0137-9). To assess AgmTRIM5α restriction in primary cells, we transduced AgmTRIM5α into primary rhesus macaque CD4 T cells and infected them with SIVmac239. Experiments with T-cell clones revealed that AgmTRIM5α could reproducibly restrict SIVmac239replication, and that this restriction synergizes with an intrinsic resistance to infection present in some CD4 T-cell clones. AgmTRIM5α transduction of virus-specific CD4 T-cell clones increased and prolonged their ability to suppress SIV spread in CD4 target cells. This increased antiviral function was strongly linked to decreased viral replication in the AgmTRIM5α-expressing effectors, consistent with restriction preventing the virus-induced cytopathogenicity that disables effector function. Taken together, our data show that AgmTRIM5α restriction, although not absolute, reduces SIV replication in primary rhesus CD4 T cells which, in turn, increases their antiviral function. These results support priorin vivodata indicating that the contribution of virus-specific CD4 T-cell effectors to viral control is limited due to infection.IMPORTANCEThe potential of effector CD4 T cells to immunologically modulate SIV/HIV infection likely is limited by their susceptibility to infection and subsequent inactivation or elimination. Here, we show that AgmTRIM5α expression inhibits SIV spread in primary effector CD4 T cellsin vitro. Importantly, protection of effector CD4 T cells by AgmTRIM5α markedly enhanced their antiviral function by delaying SIV infection, thereby extending their viability despite the presence of virus. Ourin vitrodata support priorin vivoHIV-1 studies suggesting that the antiviral CD4 effector response is impaired due to infection and subsequent cytopathogenicity. The ability of AgmTRIM5α expression to restrict SIV infection in primary rhesus effector CD4 T cells now opens an opportunity to use the SIV/rhesus macaque model to further elucidate the potential and scope of anti-AIDS virus effector CD4 T-cell function.


1993 ◽  
Vol 90 (23) ◽  
pp. 10984-10988 ◽  
Author(s):  
P B Ehrhard ◽  
P Erb ◽  
U Graumann ◽  
U Otten

Recent evidence suggests that nerve growth factor (NGF), in addition to its neurotrophic functions, acts as an immunomodulator mediating "cross-talk" between neuronal and immune cells, including T lymphocytes. We have analyzed murine CD4+ T-cell clones for their ability to express transcripts encoding NGF, low-affinity NGF receptor, and trk protooncogene, the signal-transducing receptor subunit for NGF. We show that two CD4+ T-helper (Th) clones, Th0-type clone 8/37 and Th2-type clone D10.G4.1, express NGF and Trk mRNA after appropriate activation with mitogen or with antigen and antigen-presenting cells. NGF and trk induction occurred to a similar extent and over a similar time course in activated 8/37 T cells, raising the possibility that NGF and trk genes are under coordinate control. NGF and NGF receptor expression does not seem to be a universal property of all activated CD4+ T cells, since Th1-type clone 9/9 did not express any of the transcripts after either stimulation. The absence of low-affinity NGF receptor mRNA in resting and activated T cells implies that the low-affinity NGF receptor is not involved in NGF signal transduction in CD4+ T cells. Our finding that activated CD4+ T-cell clones not only express Trk but also synthesize and release biologically active NGF implicates NGF as an autocrine and/or paracrine factor in the development and regulation of immune responses.


1988 ◽  
Vol 168 (5) ◽  
pp. 1659-1673 ◽  
Author(s):  
F T Rotteveel ◽  
I Kokkelink ◽  
R A van Lier ◽  
B Kuenen ◽  
A Meager ◽  
...  

A large number of CD4+ T cell clones, obtained from peripheral blood T lymphocytes by direct limiting dilution, allowed us to address the question whether functional heterogeneity exists within the human CD4+ T cell subset. Cytotoxic capacity of cloned T cells was analyzed with the use of anti-CD3 antibodies and target cells bearing FcR for murine IgG. 6 of 12 CD4+ clones obtained were able to lyse Daudi or P815 cells in the presence of anti-CD3 antibodies. The remaining six CD4+ T cell clones tested did not display anti-CD3-mediated cytotoxic activity and did not acquire this cytotoxic capacity during a culture period of 20 wk. In the absence of anti-CD3 mAb, no lytic activity against Daudi, P815, and K562 target cells was observed under normal culture conditions. Phenotypic analysis of these two distinct types of CD4+ T cells did not reveal differences with regard to reactivity with CDw29 (4B4) and CD45R (2H4) mAbs that have been described to recognize antigens associated with helper suppressor/inducer (respectively) CD4+ cells. The CD4+ clones without anti-CD3-mediated cytotoxic activities (Th2) consistently showed a high expression level of CD28 antigens, whereas the cytotoxic clones (Th1) expressed low amounts of CD28. Th1 CD4+ clones did produce IL-2, IFN-gamma, and TNF-alpha/beta, whereas the Th2 T cell clones produced minimal amounts of IL-2 and only low levels of INF-gamma and TNF-alpha/beta in response to anti-CD3 mAbs and PMA. Although not all CD4+ clones did release IL-4, there was no correlation with cytotoxic activity. Moreover, as compared with the Th1 CD4+ clones, Th2 CD4+ T cell clones proliferated moderately in response to immobilized anti-CD3 mAbs. However, proliferation reached the level of the cytotoxic clones when anti-CD28 mABs were present during culture. Both CD4+ subsets provided help for B cell differentiation upon stimulation with anti-CD3 mAbs. Our data suggest that the human CD4+ subset, in analogy to the murine system, comprises two functionally distinct T cell subpopulations, both of which are able to exert helper activity for polyclonal B cell differentiation, but which differ in cytotoxic capacity, lymphokine production, and requirements for proliferation. A function for these two types of T cells in the immune response is discussed.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 770-770
Author(s):  
Carolina Berger ◽  
Michael Jensen ◽  
Stanley R. Riddell

Abstract In principle, the adoptive transfer of T cell clones specific for antigens expressed by pathogens or malignant cells could be therapeutically effective and allow precise control of the specificity, function, and magnitude of T cell immunity. However, the infusion of large numbers of cultured T cells or T cell clones in clinical trials has frequently failed to eradicate tumors or provide long-term control of infection. This may be due in part to the acquisition of an effector phenotype by the T cells during in vitro culture, which reduces their ability to survive in vivo and establish an immune response of sufficient magnitude for sustained efficacy. Several approaches including the administration of cytokines such as IL15, or lymphodepletion prior to cell transfer might promote the establishment of T cell memory after T cell transfer. To facilitate the rational development of clinical trials of T cell therapy, we have employed a nonhuman primate model of adoptive T cell transfer in which culture conditions and cell doses identical to those in human studies are utilized, and designed strategies to permit rigorous analysis of the persistence, function, phenotype, and migration of transferred cells. CD8+ CTL specific for macaque CMV were detected using an overlapping peptide panel and cytokine flow cytometry, isolated as individual T cell clones by limiting dilution, and propagated to large numbers in vitro. The T cell clones were transduced to express an intracellular truncated CD19 (ΔCD19) surface marker to allow tracking and functional assessment of T cells in vivo, and enriched by immunomagnetic selection to high purity (>98%) prior to transfer. The persistence of transferred ΔCD19+ T cells in the blood and their migration to the bone marrow and lymph nodes was determined by flow cytometry after staining with anti CD19, CD8, and CD3 antibodies. The infusion of ΔCD19+CD8+ CTL (3 x 108/kg) was safe and the cells remained detectable in vivo for >5 months. ΔCD19+CD8+ T cells were easily detected in the blood 1 day after transfer at a level of 2.7% of CD8+ T cells and gradually declined over 56 days to a stable population of 0.15–0.2% of CD8+ T cells. At the time of transfer the ΔCD19+CD8+ T cells had an effector phenotype (CD62L− CD127−), but gradually converted to a CD62L+CD127+ memory phenotype in vivo. The infused T cells were found at high levels in lymph node and bone marrow at day 14 after transfer (1.4% and 2.5%, respectively) and the cells at these sites were predominantly CD62L+. The ΔCD19+CD62L+ T cells lacked direct lytic function and expressed low levels of granzyme B, consistent with memory T cells. Sorting of these cells from post-transfer PBMC showed that in vitro activation restored lytic activity. The transferred ΔCD19+CD62L+ T cells in post-infusion PBMC produced IFNγ and TNFα comparable to endogenous CMV-specific CD8+ CTL. These results demonstrate that a subset (5–10%) of transferred CD8+ CTL clones can persist long-term as functional memory T cells. The macaque CD8+ T cell clones are responsive to IL15 in vitro and a safe regimen for administering IL15 to macaques that boosts endogenous T cells has been identified. Studies are now in progress to determine if IL15 can enhance the efficiency with which effector and memory CD8+ T cell responses can be augmented after adoptive transfer of T cell clones.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3665-3665
Author(s):  
Caroline E. Rutten ◽  
Simone A.P. van Luxemburg-Heijs ◽  
Inge Jedema ◽  
Mirjam Heemskerk ◽  
Roelof Willemze ◽  
...  

Abstract Mismatching for HLA-DPB1 in unrelated donor hematopoietic stem cell transplantation (URD-SCT) has been associated with a significant decreased risk of disease relapse, indicating that HLA-DP might be a target for a graft versus leukemia (GVL) effect in HLA-class II expressing hematological malignancies. To determine whether a specific GVL effect could be caused by allo-HLA-DP specific T cells, we analyzed the immune response in a patient with a refractory immunocytoma responding to donor lymphocyte infusion (DLI) after HLA-DP mismatched URD-SCT. Patient and donor were fully matched for HLA-A, -B, -C, -DR and -DQ, but differed for both HLA-DP alleles (donor HLA-DPB1*0402/0501; patient HLA-DPB*020102/0301). The patient received a T cell depleted URD-SCT after a non-myeloablative conditioning regimen, resulting in mixed chimerism (75% donor) without GVHD. Because of a hematological relapse, a single DLI was given 6 months after SCT, resulting in a profound anti-leukemic effect with only grade I GVHD, treated with topical corticosteroids. 6 weeks after DLI, malignant cells in peripheral blood (PB) had dropped from 72% to 47%. 7 weeks later, only 3% malignant cells were present, and after 4 months, complete remission and conversion to full donor chimerism in the absence of GVHD was observed. To determine whether allo-HLA-DP specific T cells were involved in the immune response, leukemia-reactive donor T cell clones were isolated from PB or bone marrow at different time points during the response to DLI. Patient derived T cells were overnight stimulated with irradiated leukemic cells harvested before transplantation, and clonal IFNγ producing T cells were sorted and expanded. 21 CD4+ T cell clones, 19 CD8+ T cell clones and 6 NK cell clones were tested for recognition of patient or donor derived cells as measured by IFNγ production and cytotoxic activity. The CD8+ or NK clones did not recognize patient leukemic cells. However, all 21 CD4+ clones produced INFγ in response to patient leukemic cells but not to donor cells. To determine whether these CD4+ T cell clones were capable of killing the leukemic cells, a CFSE based cytotoxicity assay was performed. 8 clones showed 30–90% lysis of the leukemic cell population. To further analyze the specificity of these CD4+ clones, blocking and panel studies were performed. Blocking with the HLA-DP specific mAb B7.21 abrogated IFNγ production by all clones, confirming HLA-DP restricted recognition. A panel study using 12 unrelated EBV-LCL expressing different HLA-DP alleles identified 18 clones specific for HLA-DPB1*0301, and 3 clones specific for HLA-DPB1*0201. To analyze the polyclonality of the immune response, the distribution of TCR Vβ chains was characterized by RT-PCR and sequence reactions. 7 different Vβs were found within the HLA-DPB1*0301 specific clones and 3 different Vβs within the HLA-DPB1*0201 specific clones. T cells using the same Vβ could be isolated at different time points during the clinical response, demonstrating the significance of this anti-HLA-DP response. In conclusion, we observed in a patient with an HLA-class II positive B cell malignancy a profound GVL effect without GVHD, caused by a polyclonal immune response comprising both T helper and cytotoxic CD4+ HLA-DP specific T cell clones directed against both HLA-DP alleles. These data indicate that in HLA-class II expressing hematological malignancies HLA-DP mismatched SCT may be preferable over a fully matched SCT making use of HLA-DP as a specific target for immunotherapy.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1330-1330
Author(s):  
Sanja Stevanovic ◽  
Bart Nijmeijer ◽  
Marianke LJ Van Schie ◽  
Roelof Willemze ◽  
Marieke Griffioen ◽  
...  

Abstract Abstract 1330 Poster Board I-352 Immunodeficient mice inoculated with human leukemia can be used as a model to investigate Graft-versus-Leukemia (GvL) effects of donor lymphocyte infusions (DLIs). In addition to GvL reactivity, treatment with DLI induces xenogeneic Graft-versus-Host Disease (GvHD) in mice, characterized by pancytopenia and weight loss. In patients treated with DLI for relapsed or residual leukemia after allogeneic stem cell transplantation, immune responses against non-leukemic cells may also cause GvHD. It has been suggested that GvL reactivity and GvHD, which co-develop in vivo, can be separated and that distinct T cells exist with the specific capacity to mediate GvL reactivity or GvHD. Since adoptive T cell transfer models that allow analysis of separation of GvL and GvHD are rare, we aimed to establish whether GvL reactivity and xenogeneic GvHD could be separated using our model of human leukemia-engrafted NOD/scid mouse after treatment with human donor T cells. In this study, non-conditioned NOD/scid mice engrafted with primary human acute lymphoblastic leukemic cells were treated with CD3+ DLI. Established tumors were effectively eliminated by emerging human T cells, but also induced xenogeneic GvHD. Flowcytometric analysis demonstrated that the majority of emerging CD8+ and CD4+ T cells were activated (HLA-DR+) and expressed an effector memory phenotype (CD45RA-CD45RO+CCR7-). To investigate whether GvL reactivity and xenogeneic GvHD were mediated by the same T cells showing reactivity against both human leukemic and murine cells, or displaying distinct reactivity against human leukemic and murine cells, we clonally isolated and characterized the T cells during the GvL response and xenogeneic GvHD. T cell clones were analyzed for reactivity against primary human leukemic cells and primary NOD/scid hematopoietic (BM and spleen cells) and non-hematopoietic (skin fibroblasts) cells in IFN-g ELISA. Isolated CD8+ and CD4+ T cell clones were shown to recognize either human leukemic or murine cells, indicating that GvL response and xenogeneic GvHD were mediated by different human T cells. Flowcytometric analysis demonstrated that all BM and spleen cells expressed MHC class I, whereas only 1-3 % of the cells were MHC class II +. Primary skin fibroblasts displayed low MHC class I and completely lacked MHC class II expression. Xeno-reactive CD8+ T cell clones were shown to recognize all MHC class I + target cells and xeno-reactive CD4+ T cells clones displayed reactivity only against MHC class II + target cells. To determine the MHC restriction of xeno-reactive T cell clones, NOD/scid bone marrow (BM) derived dendritic cells (DC) expressing high levels of murine MHC class I and class II were tested for T cell recognition in the presence or absence of murine MHC class I and class II monoclonal antibodies in IFN-g ELISA. Xeno-reactive CD8+ T cell clones were shown to be MHC class I (H-2Kd or H-2Db) restricted, whereas xeno-reactive CD4+ T cell clones were MHC class II (I-Ag7) restricted, indicating that xeno-reactivity reflects genuine human T cell response directed against allo-antigens present on murine cells. Despite production of high levels of IFN-gamma, xeno-reactive CD8+ and CD4+ T cell clones failed to exert cytolytic activity against murine DC, as determined in a 51Cr-release cytotoxicity assay. Absence of cytolysis by CD8+ T cell clones, which are generally considered as potent effector cells, may be explained by low avidity interaction between human T cells and murine DC, since flowcytometric analysis revealed sub-optimal activation of T cells as measured by CD137 expression and T cell receptor downregulation upon co-culture with murine DC, and therefore these results indicate that xenogeneic GvHD in this model is likely to be mediated by cytokines. In conclusion, in leukemia-engrafted NOD/scid mice treated with CD3+ DLI, we show that GvL reactivity and xenogeneic GvHD are mediated by separate human T cells with distinct specificities. All xeno-reactive T cell clones showed genuine recognition of MHC class I or class II associated allo-antigens on murine cells similar as GvHD-inducing human T cells. These data suggest that our NOD/scid mouse model of human acute leukemia may be valuable for studying the effectiveness and specificity of selectively enriched or depleted T cells for adoptive immunotherapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4084-4084
Author(s):  
Marieke Griffioen ◽  
M. Willy Honders ◽  
Anita N. Stumpf ◽  
Edith D. van der Meijden ◽  
Cornelis A.M. van Bergen ◽  
...  

Abstract Abstract 4084 Poster Board III-1019 Donor lymphocyte infusion (DLI) can be an effective cellular immunotherapy for patients with hematological malignancies after HLA-matched allogeneic stem cell transplantation (alloSCT). The effect of DLI is mediated by donor derived T-cells recognizing minor histocompatibility antigens (mHags) encoded by single nucleotide polymorphisms (SNPs) on malignant cells of the recipient. Donor T-cells may also induce Graft-versus-Host Disease (GvHD) when directed against mHags with broad expression on non-malignant tissues. The aim of this study was to investigate the specificity and diversity of mHags recognized by T-cells in Graft-versus-Leukemia (GvL) reactivity. Activated (HLA-DR+) CD8+ and CD4+ T-cell clones were isolated from a patient successfully treated with DLI for relapsed chronic myeloid leukemia (CML) more than one year after HLA-matched alloSCT. GvL reactivity in this patient was accompanied with mild GvHD of the skin. Isolated T-cell clones were shown to recognize 13 different mHags. CD8+ T-cell clones were specific for HA-1 and HA-2 in HLA-A*0201, one unknown mHag in B*0801 and 4 unknown mHags in B*4001. CD4+ T-cell clones were specific for one unknown mHag in HLA-DQ and 5 unknown mHags in DR. By screening plasmid (class I) and bacteria (class II) cDNA libraries, we identified a mHag in HLA-DQ encoded by the PI4K2B gene (Griffioen et al., PNAS 2008), 4 mHags in HLA-DR encoded by the PTK2B, MR-1, LY75 and MTHFD1 genes (Stumpf et al., Blood 2009) and a mHag in B*4001 encoded by the TRIP10 gene. For the 3 T cell clones recognizing unknown mHags in B*4001, we performed Whole Genome Assocation scanning (WGAs). A panel of 60 EBV-LCL was retrovirally-transduced with B*4001 and tested for T-cell recognition. In parallel, genomic DNA was isolated and more than one million single nucleotide polymorphisms (SNPs) were determined by the Illumina beadchip array. Statistical analysis revealed significant association between T-cell recognition of EBV-LCL and the presence of coding SNPs in the SON DNA-binding protein and SWAP-70 genes. To get more insight into the role and potential use of the mHags in GvL reactivity and GvHD, all T-cell clones were analyzed in detail for reactivity against hematopoietic and non-hematopoietic cells. Hematopoietic cells included peripheral blood cells (monocytes, B-cells and T-cells), professional antigen presenting cells (APC) and leukemic cells (CML, ALL and AML). All CD8+ T-cell clones recognized (subsets of) peripheral blood cells as well as CML cells, except for the T-cell clone for TRIP10. Recognition of (subsets of) peripheral blood cells was also observed for all CD4+ T-cell clones, but CML cells were differentially recognized. CML cells were strongly recognized by the T-cell clones for MTHFD1 and the unknown mHag in HLA-DR, whereas no or low reactivity was observed for all other CD4+ T-cell clones. All CD8+ and CD4+ T-cell clones strongly recognized professional APC, including monocyte-derived dendritic cells and in vitro differentiated CML cells with APC phenotype. All T-cell clones were also capable of recognizing AML and ALL, except for the T-cell clone for TRIP10, which showed restricted recognition of AML-M4 and -M5 of monocytic origin. As non-hematopoietic cells, patient-derived fibroblasts were cultured with and without IFN-γ and tested for T-cell recognition. In the absence of IFN-γ, all T-cell clones failed to recognize fibroblasts, except for the T-cell clone for the unknown mHag in B*0801. After treatment with IFN-γ, additional reactivity was observed for the T-cell clones for SON DNA-binding protein and the unknown mHag in B*4001. Our data showed the specificity and diversity of mHags recognized by T-cells induced in a patient successfully treated with DLI for relapsed CML. The T-cell response was directed against 13 different mHags, of which 10 mHags in HLA class I and class II have now been identified by different techniques. Detailed analysis of T-cell recognition of hematopoietic and non-hematopoietic cells provides evidence that the mHags played different roles in the onset and execution of GvL and GvHD. Moreover, only one of the 10 identified mHags was expressed on fibroblasts after treatment with IFN-γ, indicating the characterization of mHags with potential relevance for T-cell based immunotherapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3364-3364
Author(s):  
Falk Heidenreich ◽  
Elke Ruecker-Braun ◽  
Juliane S. Stickel ◽  
Anne Eugster ◽  
Denise Kühn ◽  
...  

Abstract Background Immunotherapy for CLL with new antibodies or T-cells with modified TCR relies on attractive targets. ROR1 is such a promising target since it is highly overexpressed in CLL. Chimeric antigen receptor engineered T cells and antibodies directed against the extracellular part of ROR1 have already been developed and tested in vitro or in animal models, but still there is no MHC-class I presented peptide serving as target structure for CD8+ T cells (with or without a genetically modified T cell receptor) available. Aim The aim of this study was (1) to identify an immunogenic MHC-class I presented ROR1 peptide, (2) to generate respective ROR1 peptide specific CD8+ T cell clones, and (3) to analyze the nucleotide sequence of the CDR3 region of the expressed alpha and beta T cell receptor chain. Results In mass spectrometric-based analyses of the HLA-ligandome a HLA-B*07 presented ROR1 peptide was identified in primary CLL cells of two patients. Six T cell clones specific for this particular ROR1-peptide were generated from single CD8+ T cells from 2 healthy individuals with 3 T cell clones generated from each donor. Functionality and specificity of those T cell clones were tested in cytotoxicity assays. All 6 dextramer+ CD8+ T cell clones lysed peptide loaded and HLA-B*07+ transduced K562 cells (kindly provided by Lorenz Jahn, [Jahn et al., Blood, 2015 Feb 5;125(6):949-58]). Two selected clones (XD8 and XB6) were tested for their cytotoxic potential against 2 ROR1+ HLA-B*07+ tumor cell lines (with the ROR1 peptide identified by mass spectrometry for both of them) and against 2 primary CLL cell samples. Tested clones showed a significant lysis of the respective target cells. CDR3 regions of the alpha and beta T cell receptor chain were sequenced on a single cell level. The CDR3 alpha region from each of the 3 ROR1 specific T cell clones from donor A showed some similarities to T cell clones derived from donor B (Table 1). Conclusion For the first time a MHC-class I presented ROR1 peptide antigen is reported. ROR1 positive CLL cells can be targeted by specific HLA-B*07 restricted CTLs. Respective CD8+ T cell clones with anti-leukemic activity from 2 donors share some amino acid motifs of the CDR3 alpha and beta regions. In conclusion, this information provides the possibility of generating ROR1 specific CD8+ T cells with genetically modified T cell receptors for immunotherapy and for tracking those cells after administration with next generation sequencing in peripheral blood samples of patients. Furthermore, data suggest the existence of public TCR motifs in leukemia antigen specific CTLs, which needs to be proven in follow-up experiments with larger cohorts of donors and patients. Finally, the presented strategy to identify leukemia specific peptide antigens for CD8+ T cells might be an attractive method for similar projects. Table 1 Amino acid sequences of CDR3 alpha and beta regions of the TCR of ROR1 specific CD8+ T cell clones. When comparing two clones, matching amino acids are depicted in red. The aromatic amino acids phenylalanine (F) and tyrosine (Y) are shown in blue when situated at the same position. Gaps inserted during the sequence alignment process are indicated by a hyphen '-'. Table 1. Amino acid sequences of CDR3 alpha and beta regions of the TCR of ROR1 specific CD8+ T cell clones. When comparing two clones, matching amino acids are depicted in red. The aromatic amino acids phenylalanine (F) and tyrosine (Y) are shown in blue when situated at the same position. Gaps inserted during the sequence alignment process are indicated by a hyphen '-'. Disclosures Middeke: Sanofi: Honoraria. Schetelig:Sanofi: Honoraria.


Sign in / Sign up

Export Citation Format

Share Document